如何利用向量数据库来弥补 LLM 的弱点

2024-04-27 13:40:12 浏览数 (1)

向量数据库使企业能够以经济且可持续的方式调整通用大型语言模型以供组织特定使用。

译自 How to Cure LLM Weaknesses with Vector Databases,作者 Naren Narendran。

多年来,人们一直在猜测人工智能对企业产生的潜在影响。现在,我们看到来自不同行业的公司开始利用大型语言模型 (LLM)和生成式人工智能 (GenAI)。麦肯锡认为,全球经济可能从 GenAI 的采用中受益高达4.4 万亿美元,这使得使用人工智能和 LLM 比以往任何时候都更具吸引力。

现成的 LLM 具有吸引力,因为它们是一种相对容易的方法,可以将通用人工智能融入组织结构中。然而,LLM 有一个重大的缺陷,可能会抵消潜在的好处:缺乏特定领域的背景。在简单的用例中,这可能不是问题。然而,在生产和其他更复杂的上下文中,通用 LLM 可能会产生一系列挑战。

随着企业越来越多地转向实时人工智能应用程序和工具,他们需要超越这些限制。你可能会问,如何以经济实惠且可持续的方式来增强以人工智能为主导的环境。答案是向量数据库,我将在本文中对其进行剖析,这是两部分系列文章的第一部分。

LLM 对企业的局限性

在深入了解向量数据库的世界之前,我将着眼于现成 LLM 的三个重大局限性。

过时的训练数据

LLM 摄取的训练数据最终决定了它的能力。这是一个重大的限制,因为数据很少是常青的。相反,数据通常是特定时间点的快照,这意味着它最终可能变得不相关或不正确。

陈旧过时的数据具有重大影响,因为人工智能应用程序的准确性完全取决于训练数据的质量和新鲜度。

缺乏组织特定的背景

现成 LLM 的训练数据来自不同的公共和私人来源。这些数据赋予了 LLM 所有功能。对于企业来说,令人担忧的是,通用 LLM 缺乏组织特定的背景。这是因为没有现成的 LLM 利用特定于特定企业的专有数据,这意味着各种独特的背景将不被承认。

人工智能幻觉

信心既是 LLM 的优势,也是劣势。它们具有以绝对确定性回答问题的不可思议的能力,即使它们的答案完全错误。这种现象被称为人工智能幻觉,可能导致不准确、荒谬或潜在危险的输出。

对于信誉和运营效率取决于强大且高质量的 LLM 的企业来说,人工智能幻觉构成了重大威胁。而且,由于现成的 LLM 始终有使用过时或与领域无关的数据的风险,因此人工智能幻觉的威胁迫在眉睫。

了解向量数据库:向量嵌入

为了了解向量数据库如何改进 LLM 和其他实时人工智能应用程序,我将首先描述它们包含的内容。

向量数据库是向量嵌入的索引存储库。向量嵌入是文本、视频、照片和音频等各种形式数据的数学或数字表示。通过将不同的可读数据转换为数字序列,向量嵌入提供了语义(而不是肤浅的)价值。从本质上讲,向量嵌入根据关系对数据进行分类,上下文和深层含义。

在 LLM 上下文中,将不同数据格式中的复杂语义转换为标准化数字表示至关重要。通过使用数学语言和逻辑,向量嵌入提供了更高程度的搜索和检索准确性跨以前异构的数据。这有助于优化搜索、聚类、分类和异常检测。对于企业来说,这是潜在的变革,因为任何机器学习 (ML) 算法都可以受益于向量嵌入。

向量数据库如何提升现成的 LLM

在现成的 LLM 中,训练期间使用的向量嵌入通常保持未发布和未知状态,因此很难评估其理解和能力的局限性。但是,大多数 LLM 都具有嵌入功能,这意味着企业可以向其中注入特定于领域的的数据,以解决特定于组织的知识差距。通过将包含专有信息和其他特定于领域的信息的向量嵌入的补充 LLM 向量数据库集成到其 LLM 中,公司可以根据其独特需求增强现成的 AI 解决方案。

使用向量数据库丰富和优化 LLM 还可以消除上面列出的现成产品的风险。

例如,如果可以定期添加更多更新且相关的数据,那么企业不必担心其 LLM 利用陈旧的数据。此外,通过添加包含专有数据的向量数据库,组织可以显著降低 AI 幻觉的可能性。

AI 采用的好处不会轻易获得。但是,通过理解和利用 LLM 向量数据库,企业可以释放强大的实时 AI 应用程序的全部潜力。

LLM 和向量数据库:前进的道路

生成式 AI 和 LLM 在各个领域激增。许多组织正在利用这些技术来加强其后端基础设施、增强服务和产品,并成为其领域的领导者。虽然现成的 LLM 是运行实时 AI 应用程序的一个良好起点,但它们充满了挑战和限制。其中关键的是过时的训练数据、缺乏特定于组织的上下文和 AI 幻觉。

向量数据库和嵌入 是应对这些 LLM 挑战的强大解毒剂,并且可以极大地提高搜索准确性。

在本系列的第 2 部分中,我将探讨检索增强生成 (RAG) 架构框架如何帮助公司将专有向量数据库添加到其 LLM 和 AI 生态系统中,以解决现成 LLM 的局限性。*了解 * Aerospike 的企业级向量搜索解决方案 如何大规模提供一致的准确性。

0 人点赞