极客 AI大模型微调训练营(新附zy)

2024-05-05 22:05:36 浏览数 (2)

大模型微调技术介绍

LLM微调是一个将预训练模型在较小、特定数据集上进一步训练的过程,目的是精炼模型的能力,提高其在特定任务或领域上的性能。微调的目的是将通用模型转变为专用模型,弥合通用预训练模型与特定应用需求之间的差距,确保语言模型更贴近人类的期望。

以OpenAI的GPT-3为例,这是一个为广泛的自然语言处理(NLP)任务设计的先进LLM。假设一家医疗组织希望使用GPT-3来帮助医生从文本笔记生成患者报告。虽然GPT-3能理解和创建一般文本,但它可能没有针对复杂的医学术语和特定医疗术语进行优化。

为了提高GPT-3在这一专业角色中的性能,该组织会在包含医疗报告和患者笔记的数据集上对GPT-3进行微调。它可能会使用像SuperAnnotate的LLM定制编辑器这样的工具来构建具有所需界面的模型。通过这个过程,模型变得更加熟悉医学术语、临床语言的微妙之处和典型的报告结构。微调后,GPT-3能够协助医生生成准确且连贯的患者报告,展示了它对特定任务的适应性。

什么时候需要LLM微调

说起LLM,总会涉及到上下文学习、零样本、单样本和少样本推理等话题。我们先快速了解一下它们主要的功能。

**上下文学习(In-context learning) **是一种通过在提示中加入特定任务示例来改进提示的方法,为LLM提供了完成任务的蓝图。

「零样本(Zero-shot)、单样本(One-shot)和少样本(Few-shot)推理」 零样本推理是在提示中直接使用输入数据,不添加额外示例。如果零样本推理未能达到预期结果,可以使用单样本或少样本推理。这些策略涉及在提示中添加一个或多个已完成的示例,帮助较小的LLM表现得更好。

「上下文学习的问题」 将以上这些技术直接应用于用户提示,旨在优化模型输出,使其更符合用户偏好。问题是它们并不总是有效,尤其是对于较小的LLM。除此之外,在提示中包含的任何示例都会占用宝贵的上下文窗口空间,减少了包含其他有用信息的空间。

「当以上方式无法解决相关问题时,这就需要LLM微调」。但它与预训练阶段使用大量非结构化文本数据不同,微调是一个监督学习过程。这意味着你使用标记好的示例数据集来更新LLM的权重。这些标记好的示例通常是prompt-response,使得模型能更好地完成特定任务。

为什么需要微调

  1. 因为通常大模型的实现原理,都会对输入序列的长度有限制,Prompt Engineering 的方式会把Prompt搞得很长。越长的Prompt,大模型的推理成本越高,因为推理成本是跟Prompt长度的平方正向相关的。
  2. Prompt太长会因超过限制而被截断,进而导致大模型的输出质量打折口,这也是一个非常严重的问题。可能会胡乱地给你一些东西,它更适合一些泛化的任务。而fine-tuning则不一样,只要你的微调训练数据是高质量的,它可以很稳定地在你自己的数据集或任务上进行稳定的输出。
  3. Prompt Engineering的效果达不到要求时,企业又有比较好的自有数据,能够通过自有数据,更好的提升大模型在特定领域的能力。这时候微调就非常适用,微调可以使你为LLM提供比prompt多得多的数据,你的模型可以从该数据中进行学习,而不仅仅是访问该数据
  4. 要在个性化的服务中使用大模型的能力,这时候针对每个用户的数据,训练一个轻量级的微调模型,就是一个不错的方案。
  5. 数据安全的问题。如果数据是不能传递给第三方大模型服务的,那么搭建自己的大模型就非常必要。通常这些开源的大模型都是需要用自有数据进行微调,才能够满足业务的需求,这时候也需要对大模型进行微调。

极客时间 AI大模型微调训练营 Freeze方法

Freeze方法,即参数冻结,对原始模型部分参数进行冻结操作,仅训练部分参数,以达到在单卡或不进行TP或PP操作,就可以对大模型进行训练。

微调代码,见finetuning_freeze.py,核心部分如下:

代码语言:javascript复制
arduino复制代码for name, param in model.named_parameters():
    if not any(nd in name for nd in ["layers.27", "layers.26", "layers.25", "layers.24", "layers.23"]):
        param.requires_grad = False

针对模型不同层进行修改,可以自行修改。训练代码均采用DeepSpeed进行训练,可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text等,可根据自己的任务配置。

代码语言:javascript复制
css复制代码CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_freeze.py --num_train_epochs 5 --train_batch_size 2

三元组抽取的推理代码,见predict_freeze.py,其他任务可以根据自己的评价标准进行推理预测。

LLM

0 人点赞