几何非线性| 桁架单元(一)

2024-05-10 18:43:47 浏览数 (1)

在上篇几何非线性| 应变张量,得到拉格朗日应变表达式为

mathbf E = frac{1}{2}(mathbf H mathbf H^T mathbf H^T mathbf H)

用指标记法

E_{ij}=frac{1}{2}(frac{partial u_i }{partial X_j} frac{partial u_j }{partial X_i} frac{partial u_k }{partial X_j}frac{partial u_k }{partial X_i}) quad (1)

对于杆系结构,有

epsilon_{x}=frac{partial u }{partial x} frac{1}{2}(frac{partial u }{partial x})^2 frac{1}{2}(frac{partial v }{partial x})^2 frac{1}{2}(frac{partial w }{partial x})^2 quad (2)

拉格朗日应变适用于描述几何非线性。

▲图1

如图1所示的桁架单元,局部坐标下的位移插值

begin{split} u(x) &=[1- frac{x}{l},0,frac{x}{l},0]begin{Bmatrix} u_1 \ v_1 \ u_2 \ v_2 \ end{Bmatrix} \ v(x) &=[0,1- frac{x}{l},0,frac{x}{l}]begin{Bmatrix} u_1 \ v_1 \ u_2 \ v_2 \ end{Bmatrix} end{split}
mathbf u = mathbf Nmathbf q^e quad (3)

其中,

mathbf q^e

是单元节点位移矩阵。

begin{split} frac{partial u }{partial x} &=u^{'}\ &= frac{1}{l}begin{bmatrix} -1 & 0 & 1 & 0 \ end{bmatrix} begin{Bmatrix} u_1 \ v_1 \ u_2 \ v_2 \ end{Bmatrix} \ &= mathbf C mathbf q^e end{split}
begin{split} frac{partial v }{partial x} &=v^{'}\ &= frac{1}{l}begin{bmatrix} 0 & -1 & 0 & 1 \ end{bmatrix} begin{Bmatrix} u_1 \ v_1 \ u_2 \ v_2 \ end{Bmatrix} \ &= mathbf D mathbf q^e end{split}

拉格朗日应变

epsilon = mathbf C mathbf q^e frac{1}{2} {mathbf q^e}^T {mathbf C}^T mathbf C mathbf q^e frac{1}{2} {mathbf q^e}^T {mathbf D}^T mathbf D mathbf q^e quad (4)

虚位移

delta mathbf u = mathbf N delta mathbf q^e quad (5)

虚应变

begin{split} delta epsilon &= frac{partial epsilon }{partial mathbf q^e }delta mathbf q^e \ &= mathbf B(mathbf q^e) delta mathbf q^e end{split} quad (6)

这里,(6)用到了变分运算公式

delta f = frac{partial f }{partial x }delta x frac{partial f }{partial y }delta y

内力虚功为

begin{split} delta W_i & = int_V delta boldsymbol {epsilon}^T boldsymbol{sigma} dV \ & = delta mathbf q^{eT} int_V mathbf B^T boldsymbol {sigma} dV end{split} quad (7)

f_i= int_V mathbf B^T boldsymbol {sigma} dV quad (8)

delta W_i = delta mathbf q^{eT} f_i quad (9)

由(6)可得

begin{split} bf B &= frac{partial epsilon }{partial mathbf q^{e}}\ &= frac{partial epsilon }{partial u^{'}}frac{partial u^{'} }{partial mathbf q^{e}} frac{partial epsilon }{partial v^{'}}frac{partial v^{'} }{partial mathbf q^{e}}\ &= (1 u^{'}) mathbf {C} v^{'} mathbf D \ &= mathbf C mathbf q^{eT} mathbf C^Tmathbf C mathbf q^{eT} mathbf D^Tmathbf D end{split} quad (10)

应力

begin{split} sigma &= E(u^{'} frac{1}{2}u^{'2} frac{1}{2}v^{'2})\ &= E(mathbf C mathbf q^e frac{1}{2} {mathbf q^e}^T {mathbf C}^T mathbf C mathbf q^e frac{1}{2} {mathbf q^e}^T {mathbf D}^T mathbf D mathbf q^e) end{split} quad (11)

由(8)(10)(11)可得

f_i= ((1 u^{'}) mathbf C^T v^{'} mathbf D^T )sigma Al quad (12)

▲图2

如图2所示的非线性迭代过程,当某一迭代步

i

达到收敛标准时,可以认为处于平衡状态,即

f_i(mathbf q^i) = f_e(mathbf q^i) quad (13)

式中

f_i

是结构内力,

f_e

是外荷载,

mathbf q^i

i

迭代步时的节点位移。

i 1

迭代步时的内力用一阶泰勒展开

f_i(mathbf q^{i 1}) approx f_i(mathbf q^i) frac{partial f_i }{partial mathbf q} Delta mathbf q^{i} quad (14)

由(13)(14)得

frac{partial f_i }{partial mathbf q} Delta mathbf q^{i} = f_e(mathbf q^{i 1})-f_i(mathbf u^i) quad (15)

mathbf K_T = frac{partial f_i }{partial mathbf q} quad (16)

其中,

mathbf K_T

叫做切线刚度矩阵,(15)可写成

mathbf K_T Delta mathbf q^{i} = f_e(mathbf q^{i 1})-f_i(mathbf q^i) quad (17)
mathbf K_T

是内力的导数,

f_e(mathbf q^{i 1})

是新的荷载步下的外荷载。

begin{split} mathbf K_T &= int_V mathbf B^T frac{partial boldsymbol {sigma} }{partial boldsymbol {epsilon}} frac{partial boldsymbol {epsilon}} {partial mathbf q} dV int_V frac{partial mathbf B^T }{partial mathbf q} boldsymbol {sigma}dV\ &= int_V mathbf B^T E mathbf B dV int_V frac{partial mathbf B^T }{partial mathbf q} boldsymbol {sigma}dV\ &= mathbf K_{mathbf q} mathbf K_{boldsymbol {sigma}}\ end{split} quad (17)

其中

mathbf K_{mathbf q}

叫做初始刚度矩阵,

mathbf K_{sigma}

叫做几何刚度矩阵。对于桁架单元

begin{split} mathbf K_{mathbf q} &= [(1 u^{'}) mathbf {C}^T v^{'} mathbf D^T][(1 u^{'}) mathbf {C} v^{'} mathbf D]EAl\ &= [(1 u^{'})^2mathbf {C}^Tmathbf {C} v^{'}(1 u^{'})(mathbf {D}^Tmathbf {C} mathbf {C}^Tmathbf {D} ) v^{'2}mathbf {D}^Tmathbf {D}] EAl\ end{split} quad (18)

几何刚度矩阵

begin{split} mathbf K_{boldsymbol {sigma}} &= frac{partial }{partial u^{'} }(1 u^{'}) mathbf {C}^T frac{partial u^{'} }{partial mathbf q } frac{partial }{partial v^{'} }(v^{'}) mathbf {D}^T frac{partial v^{'} }{partial mathbf q } boldsymbol {sigma}Al \ &= (mathbf {C}^Tmathbf {C} mathbf {D}^Tmathbf {D}) boldsymbol {sigma}Al end{split} quad (19)

其中

begin{split} mathbf {C}^Tmathbf {C} &= frac{1}{l^2} begin{bmatrix} -1 \ 0 \ 1 \ 0 \ end{bmatrix} begin{bmatrix} -1 & 0 & 1 & 0 \ end{bmatrix} \ &= frac{1}{l^2} begin{bmatrix} 1 & 0 & -1 & 0 \ 0 & 0 & 0 & 0 \ -1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ end{bmatrix} \ end{split}

同理

begin{split} mathbf {D}^Tmathbf {D} &= frac{1}{l^2} begin{bmatrix} 0 & 0 & 0 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & 0 & 0 \ 0 & -1 & 0 & 1 \ end{bmatrix} \ end{split}

最终得到局部坐标下的切线刚度矩阵为

begin{split} mathbf K_T &= frac{EA}{l} begin{bmatrix} (1 u^{'})^2 & (v^{'} v^{'}u^{'}) & -(1 u^{'})^2 & -(v^{'} v^{'}u^{'}) \ (v^{'} v^{'}u^{'}) & v^{'2} & -(v^{'} v^{'}u^{'}) & -v^{'2} \ -(1 u^{'})^2 & -(v^{'} v^{'}u^{'}) & (1 u^{'})^2 & (v^{'} v^{'}u^{'}) \ -(v^{'} v^{'}u^{'}) & -v^{'2} & (v^{'} v^{'}u^{'}) & v^{'2} \ end{bmatrix} \ &quad frac{sigma A}{l} begin{bmatrix} 1 & 0 & -1 & 0 \ 0 & 1 & 0 & -1 \ -1 & 0 & 1 & 0 \ 0 & -1 & 0 & 1 \ end{bmatrix} \ end{split} quad (20)

局部坐标和整体坐标下的节点位移转换关系

mathbf q^e = mathbf T mathbf q^g

整体坐标下的切线刚度矩阵

mathbf K_T^g = mathbf T^T mathbf K_Tmathbf T

0 人点赞