NASA数据集——GES DISC 的 AIRS-CloudSat 云掩模、雷达反射率和云分类匹配 V3.2 (AIRS_CPR_MAT)

2024-05-24 09:31:54 浏览数 (1)

AIRS-AMSU variables-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2 (AIRSM_CPR_MAT) at GES DISC

GES DISC 的 AIRS-CloudSat 云掩模、雷达反射率和云分类匹配 V3.2 (AIRS_CPR_MAT)

简介

这是 NetCDF-4 格式的 AIRS-CloudSat 定位子集。这些数据包括AIRS 1b 级辐射光谱、CloudSat 雷达反射率和 MODIS 云掩模。这些数据是在 MEaSUREs 项目框架内创建的。

其基本任务是汇集来自多个 "A-train "仪器(AIRS、AMSR-E、MODIS、AMSU、MLS、CloudSat)的水汽和云层属性检索数据,利用云层信息对每个 "场景"(仪器外观)进行分类,并按云层类别分层建立大气水汽随高度变化的合并多传感器气候学。这是一个大型科学分析项目,需要使用 SciFlo 技术来发现和组织所有数据集,根据需要移动和缓存数据集,找到成对仪器之间的空间/时间 "匹配",并处理多年的卫星数据以生成气候数据记录。

该数据集的简称为 AIRS_CPR_MAT

数据文件中包含的参数如下:变量名|描述|单位 CldFrcStdErr|云分率|(无) CloudLayers|水文气象层数|(计数) CPR_Cloud_mask| CPR 云掩码|(无) DEM_elevation| 数字高程图|(米) dust_flag| 灰尘标志|(无) latAIRS|AIRS IR 纬度|(度) Latitude|CloudSat 纬度|(度)LayerBase| 层基高度|(米) LayerTop| 层顶高度|(米) lonAIRS|AIRS IR 经度|(度) Longitude|CloudSat 经度|(度) MODIS_cloud_flag| MOD35_bit_2and3_cloud_flag| (无) Radar_Reflectivity| 雷达反射率因子|(dBZe) radiances|Radiances|(milliWatts/m2/cm-) Sigma-Zadian)1/steradian) Sigma-Zero|Σ-Zero| (dB*100) spectral_clear_indicator|Spectral Clear Indicator|(无) Vertical_binsize|CloudSat vertical binsize| (m) 参数信息结束

具体信息

Resource Type

Dataset

Metadata Created Date

November 12, 2020

Metadata Updated Date

December 6, 2023

Publisher

NASA/GSFC/SED/ESD/GCDC/GESDISC

Maintainer

GERALD MANIPON

Identifier

C1236224153-GES_DISC

Data First Published

2006-06-15

Language

en-US

Data Last Modified

2012-12-14

Category

MEaSUREs, geospatial

Public Access Level

public

Bureau Code

026:00

Metadata Context

https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld

Metadata Catalog ID

https://data.nasa.gov/data.json

Schema Version

https://project-open-data.cio.gov/v1.1/schema

Catalog Describedby

https://project-open-data.cio.gov/v1.1/schema/catalog.json

Citation

Eric Fetzer, Brian Wilson, and Gerald Manipon. 2013-07-01. AIRS_CPR_MAT. Version 3.2. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2. Greenbelt, MD, USA. AIRS_CPR_MAT_3.2. Archived by National Aeronautics and Space Administration, U.S. Government, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/MEASURES/WVCC/DATA203. https://disc.gsfc.nasa.gov/datacollection/AIRS_CPR_MAT_3.2.html. Digital Science Data.

Creator

Eric Fetzer, Brian Wilson, and Gerald Manipon

Data Presentation Form

Digital Science Data

Graphic Preview File

https://docserver.gesdisc.eosdis.nasa.gov/public/project/Images/AIRS_CPR_MAT_3.2.png

Harvest Object Id

05e26f18-33dc-42b9-a62c-51e9aab0d02b

Harvest Source Id

58f92550-7a01-4f00-b1b2-8dc953bd598f

Harvest Source Title

NASA Data.json

Issue Identification

AIRS_CPR_MAT_3.2

Homepage URL

https://doi.org/10.5067/MEASURES/WVCC/DATA203

Metadata Type

geospatial

Old Spatial

-180.0 -90.0 180.0 90.0

Program Code

026:001

Release Place

Greenbelt, MD, USA

Series Name

AIRS_CPR_MAT

Source Datajson Identifier

True

Source Hash

3a8b1f5c7a329194d6bbfb4266a1669f2331cf655cb1d3bd7dea5330feae2ed2

Source Schema Version

1.1

Spatial

Temporal

2006-06-15T00:00:00Z/2012-12-14T23:59:59.999Z

Hide

代码

代码语言:javascript复制
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="AIRSM_CPR_MAT",
    cloud_hosted=True,
    bounding_box=(-180, -90, 180, 90),
    temporal=("2020-12-20", "2023-12-08"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

数据链接

AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2 (AIRS_CPR_MAT) at GES DISC - Catalog

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg

0 人点赞