向后重新采样
版本 1.3.0 中的新功能。
有时,我们需要调整箱子的开始而不是结束,以便使用给定的freq
进行向后重新采样。向后重新采样默认将closed
设置为'right'
,因为最后一个值应被视为最后一个箱子的边缘点。
我们可以将origin
设置为'end'
。特定Timestamp
索引的值表示从当前Timestamp
减去freq
到当前Timestamp
的右闭区间的重新采样结果。
In [345]: ts.resample('17min', origin='end').sum()
Out[345]:
2000-10-01 23:35:00 0
2000-10-01 23:52:00 18
2000-10-02 00:09:00 27
2000-10-02 00:26:00 63
Freq: 17min, dtype: int64
此外,与'start_day'
选项相反,支持end_day
。这将把origin
设置为最大Timestamp
的午夜。
In [346]: ts.resample('17min', origin='end_day').sum()
Out[346]:
2000-10-01 23:38:00 3
2000-10-01 23:55:00 15
2000-10-02 00:12:00 45
2000-10-02 00:29:00 45
Freq: 17min, dtype: int64
以上结果使用2000-10-02 00:29:00
作为最后一个箱子的右边缘,因为以下计算。
In [347]: ceil_mid = rng.max().ceil('D')
In [348]: freq = pd.offsets.Minute(17)
In [349]: bin_res = ceil_mid - freq * ((ceil_mid - rng.max()) // freq)
In [350]: bin_res
Out[350]: Timestamp('2000-10-02 00:29:00')
```## 时间跨度表示
在 pandas 中,时间的常规间隔由`Period`对象表示,而`Period`对象的序列被收集在`PeriodIndex`中,可以使用便利函数`period_range`创建。
### 期间
`Period`表示一段时间(例如,一天,一个月,一个季度等)。您可以通过使用频率别名来指定`freq`关键字来指定跨度。因为`freq`表示`Period`的跨度,所以不能像“-3D”那样是负数。
```py
In [351]: pd.Period("2012", freq="Y-DEC")
Out[351]: Period('2012', 'Y-DEC')
In [352]: pd.Period("2012-1-1", freq="D")
Out[352]: Period('2012-01-01', 'D')
In [353]: pd.Period("2012-1-1 19:00", freq="h")
Out[353]: Period('2012-01-01 19:00', 'h')
In [354]: pd.Period("2012-1-1 19:00", freq="5h")
Out[354]: Period('2012-01-01 19:00', '5h')
从期间中添加和减去整数会按照其自身频率移动期间。不允许在具有不同freq
(跨度)的Period
之间进行算术运算。
In [355]: p = pd.Period("2012", freq="Y-DEC")
In [356]: p 1
Out[356]: Period('2013', 'Y-DEC')
In [357]: p - 3
Out[357]: Period('2009', 'Y-DEC')
In [358]: p = pd.Period("2012-01", freq="2M")
In [359]: p 2
Out[359]: Period('2012-05', '2M')
In [360]: p - 1
Out[360]: Period('2011-11', '2M')
In [361]: p == pd.Period("2012-01", freq="3M")
Out[361]: False
如果Period
频率是每天或更高(D
,h
,min
,s
,ms
,us
和ns
),则可以添加offsets
和类似于timedelta
的内容,如果结果具有相同的频率,则可以添加。否则,将引发ValueError
。
In [362]: p = pd.Period("2014-07-01 09:00", freq="h")
In [363]: p pd.offsets.Hour(2)
Out[363]: Period('2014-07-01 11:00', 'h')
In [364]: p datetime.timedelta(minutes=120)
Out[364]: Period('2014-07-01 11:00', 'h')
In [365]: p np.timedelta64(7200, "s")
Out[365]: Period('2014-07-01 11:00', 'h')
代码语言:javascript复制In [366]: p pd.offsets.Minute(5)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
File period.pyx:1824, in pandas._libs.tslibs.period._Period._add_timedeltalike_scalar()
File timedeltas.pyx:278, in pandas._libs.tslibs.timedeltas.delta_to_nanoseconds()
File np_datetime.pyx:661, in pandas._libs.tslibs.np_datetime.convert_reso()
ValueError: Cannot losslessly convert units
The above exception was the direct cause of the following exception:
IncompatibleFrequency Traceback (most recent call last)
Cell In[366], line 1
----> 1 p pd.offsets.Minute(5)
File period.pyx:1845, in pandas._libs.tslibs.period._Period.__add__()
File period.pyx:1826, in pandas._libs.tslibs.period._Period._add_timedeltalike_scalar()
IncompatibleFrequency: Input cannot be converted to Period(freq=h)
如果Period
具有其他频率,则只能添加相同的offsets
。否则,将引发ValueError
。
In [367]: p = pd.Period("2014-07", freq="M")
In [368]: p pd.offsets.MonthEnd(3)
Out[368]: Period('2014-10', 'M')
代码语言:javascript复制In [369]: p pd.offsets.MonthBegin(3)
---------------------------------------------------------------------------
IncompatibleFrequency Traceback (most recent call last)
Cell In[369], line 1
----> 1 p pd.offsets.MonthBegin(3)
File period.pyx:1847, in pandas._libs.tslibs.period._Period.__add__()
File period.pyx:1837, in pandas._libs.tslibs.period._Period._add_offset()
File period.pyx:1732, in pandas._libs.tslibs.period.PeriodMixin._require_matching_freq()
IncompatibleFrequency: Input has different freq=3M from Period(freq=M)
具有相同频率的Period
实例之间的差异将返回它们之间的频率单位数:
In [370]: pd.Period("2012", freq="Y-DEC") - pd.Period("2002", freq="Y-DEC")
Out[370]: <10 * YearEnds: month=12>
PeriodIndex 和 period_range
Period
对象的常规序列可以收集在PeriodIndex
中,可以使用period_range
便利函数构建:
In [371]: prng = pd.period_range("1/1/2011", "1/1/2012", freq="M")
In [372]: prng
Out[372]:
PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06',
'2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12',
'2012-01'],
dtype='period[M]')
PeriodIndex
构造函数也可以直接使用:
In [373]: pd.PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M")
Out[373]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]')
传递乘以的频率会输出一个具有乘以跨度的Period
序列。
In [374]: pd.period_range(start="2014-01", freq="3M", periods=4)
Out[374]: PeriodIndex(['2014-01', '2014-04', '2014-07', '2014-10'], dtype='period[3M]')
如果start
或end
是Period
对象,则它们将用作与PeriodIndex
构造函数的频率匹配的锚定端点。
In [375]: pd.period_range(
.....: start=pd.Period("2017Q1", freq="Q"), end=pd.Period("2017Q2", freq="Q"), freq="M"
.....: )
.....:
Out[375]: PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'], dtype='period[M]')
就像DatetimeIndex
一样,PeriodIndex
也可以用于索引 pandas 对象:
In [376]: ps = pd.Series(np.random.randn(len(prng)), prng)
In [377]: ps
Out[377]:
2011-01 -2.916901
2011-02 0.514474
2011-03 1.346470
2011-04 0.816397
2011-05 2.258648
2011-06 0.494789
2011-07 0.301239
2011-08 0.464776
2011-09 -1.393581
2011-10 0.056780
2011-11 0.197035
2011-12 2.261385
2012-01 -0.329583
Freq: M, dtype: float64
PeriodIndex
支持与Period
相同规则的加法和减法。
In [378]: idx = pd.period_range("2014-07-01 09:00", periods=5, freq="h")
In [379]: idx
Out[379]:
PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',
'2014-07-01 12:00', '2014-07-01 13:00'],
dtype='period[h]')
In [380]: idx pd.offsets.Hour(2)
Out[380]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],
dtype='period[h]')
In [381]: idx = pd.period_range("2014-07", periods=5, freq="M")
In [382]: idx
Out[382]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'], dtype='period[M]')
In [383]: idx pd.offsets.MonthEnd(3)
Out[383]: PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype='period[M]')
PeriodIndex
有自己的名为period
的 dtype,请参考 Period Dtypes。
期间 dtype
PeriodIndex
具有自定义的period
dtype。这是类似于时区感知 dtype(datetime64[ns, tz]
)的 pandas 扩展 dtype。
period
dtype 保存freq
属性,并且用period[freq]
表示,如period[D]
或period[M]
,使用频率字符串。
In [384]: pi = pd.period_range("2016-01-01", periods=3, freq="M")
In [385]: pi
Out[385]: PeriodIndex(['2016-01', '2016-02', '2016-03'], dtype='period[M]')
In [386]: pi.dtype
Out[386]: period[M]
period
dtype 可以在.astype(...)
中使用。它允许更改PeriodIndex
的freq
,如.asfreq()
,并将DatetimeIndex
转换为PeriodIndex
,如to_period()
:
# change monthly freq to daily freq
In [387]: pi.astype("period[D]")
Out[387]: PeriodIndex(['2016-01-31', '2016-02-29', '2016-03-31'], dtype='period[D]')
# convert to DatetimeIndex
In [388]: pi.astype("datetime64[ns]")
Out[388]: DatetimeIndex(['2016-01-01', '2016-02-01', '2016-03-01'], dtype='datetime64[ns]', freq='MS')
# convert to PeriodIndex
In [389]: dti = pd.date_range("2011-01-01", freq="ME", periods=3)
In [390]: dti
Out[390]: DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31'], dtype='datetime64[ns]', freq='ME')
In [391]: dti.astype("period[M]")
Out[391]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]')
PeriodIndex 部分字符串索引
PeriodIndex 现在支持具有非单调索引的部分字符串切片。
您可以像DatetimeIndex
一样向Series
和DataFrame
传递日期和字符串,具有PeriodIndex
,有关详细信息,请参考 DatetimeIndex 部分字符串索引。
In [392]: ps["2011-01"]
Out[392]: -2.9169013294054507
In [393]: ps[datetime.datetime(2011, 12, 25):]
Out[393]:
2011-12 2.261385
2012-01 -0.329583
Freq: M, dtype: float64
In [394]: ps["10/31/2011":"12/31/2011"]
Out[394]:
2011-10 0.056780
2011-11 0.197035
2011-12 2.261385
Freq: M, dtype: float64
传递表示低于PeriodIndex
的频率的字符串将返回部分切片数据。
In [395]: ps["2011"]
Out[395]:
2011-01 -2.916901
2011-02 0.514474
2011-03 1.346470
2011-04 0.816397
2011-05 2.258648
2011-06 0.494789
2011-07 0.301239
2011-08 0.464776
2011-09 -1.393581
2011-10 0.056780
2011-11 0.197035
2011-12 2.261385
Freq: M, dtype: float64
In [396]: dfp = pd.DataFrame(
.....: np.random.randn(600, 1),
.....: columns=["A"],
.....: index=pd.period_range("2013-01-01 9:00", periods=600, freq="min"),
.....: )
.....:
In [397]: dfp
Out[397]:
A
2013-01-01 09:00 -0.538468
2013-01-01 09:01 -1.365819
2013-01-01 09:02 -0.969051
2013-01-01 09:03 -0.331152
2013-01-01 09:04 -0.245334
... ...
2013-01-01 18:55 0.522460
2013-01-01 18:56 0.118710
2013-01-01 18:57 0.167517
2013-01-01 18:58 0.922883
2013-01-01 18:59 1.721104
[600 rows x 1 columns]
In [398]: dfp.loc["2013-01-01 10h"]
Out[398]:
A
2013-01-01 10:00 -0.308975
2013-01-01 10:01 0.542520
2013-01-01 10:02 1.061068
2013-01-01 10:03 0.754005
2013-01-01 10:04 0.352933
... ...
2013-01-01 10:55 -0.865621
2013-01-01 10:56 -1.167818
2013-01-01 10:57 -2.081748
2013-01-01 10:58 -0.527146
2013-01-01 10:59 0.802298
[60 rows x 1 columns]
与DatetimeIndex
一样,结果将包括端点。下面的示例从 10:00 开始切片数据到 11:59。
In [399]: dfp["2013-01-01 10h":"2013-01-01 11h"]
Out[399]:
A
2013-01-01 10:00 -0.308975
2013-01-01 10:01 0.542520
2013-01-01 10:02 1.061068
2013-01-01 10:03 0.754005
2013-01-01 10:04 0.352933
... ...
2013-01-01 11:55 -0.590204
2013-01-01 11:56 1.539990
2013-01-01 11:57 -1.224826
2013-01-01 11:58 0.578798
2013-01-01 11:59 -0.685496
[120 rows x 1 columns]
使用 PeriodIndex 进行频率转换和重采样
Period
和PeriodIndex
的频率可以通过asfreq
方法进行转换。让我们从 2011 财政年度开始,截至 12 月:
In [400]: p = pd.Period("2011", freq="Y-DEC")
In [401]: p
Out[401]: Period('2011', 'Y-DEC')
我们可以将其转换为月度频率。使用how
参数,我们可以指定是返回起始月份还是结束月份:
In [402]: p.asfreq("M", how="start")
Out[402]: Period('2011-01', 'M')
In [403]: p.asfreq("M", how="end")
Out[403]: Period('2011-12', 'M')
提供了‘s’和‘e’的简写形式以方便使用:
代码语言:javascript复制In [404]: p.asfreq("M", "s")
Out[404]: Period('2011-01', 'M')
In [405]: p.asfreq("M", "e")
Out[405]: Period('2011-12', 'M')
转换为“超期”(例如,年度频率是季度频率的超期)将自动返回包含输入期间的超期:
代码语言:javascript复制In [406]: p = pd.Period("2011-12", freq="M")
In [407]: p.asfreq("Y-NOV")
Out[407]: Period('2012', 'Y-NOV')
请注意,由于我们转换为年度频率,年终在十一月,因此 2011 年 12 月的月度期间实际上在 2012 年 Y-NOV 期间。
具有锚定频率的期间转换对于处理经济学、商业和其他领域常见的各种季度数据特别有用。许多组织将季度定义为其财政年度开始和结束的月份。因此,2011 年第一季度可能从 2010 年开始,或者在 2011 年的几个月内开始。通过锚定频率,pandas 适用于所有季度频率 Q-JAN
到 Q-DEC
。
Q-DEC
定义常规日历季度:
In [408]: p = pd.Period("2012Q1", freq="Q-DEC")
In [409]: p.asfreq("D", "s")
Out[409]: Period('2012-01-01', 'D')
In [410]: p.asfreq("D", "e")
Out[410]: Period('2012-03-31', 'D')
Q-MAR
定义了年度财政年度结束于三月:
In [411]: p = pd.Period("2011Q4", freq="Q-MAR")
In [412]: p.asfreq("D", "s")
Out[412]: Period('2011-01-01', 'D')
In [413]: p.asfreq("D", "e")
Out[413]: Period('2011-03-31', 'D')
```## 转换表示方式
时间戳数据可以使用 `to_period` 转换为 PeriodIndex 数据,反之亦然使用 `to_timestamp`:
```py
In [414]: rng = pd.date_range("1/1/2012", periods=5, freq="ME")
In [415]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [416]: ts
Out[416]:
2012-01-31 1.931253
2012-02-29 -0.184594
2012-03-31 0.249656
2012-04-30 -0.978151
2012-05-31 -0.873389
Freq: ME, dtype: float64
In [417]: ps = ts.to_period()
In [418]: ps
Out[418]:
2012-01 1.931253
2012-02 -0.184594
2012-03 0.249656
2012-04 -0.978151
2012-05 -0.873389
Freq: M, dtype: float64
In [419]: ps.to_timestamp()
Out[419]:
2012-01-01 1.931253
2012-02-01 -0.184594
2012-03-01 0.249656
2012-04-01 -0.978151
2012-05-01 -0.873389
Freq: MS, dtype: float64
请记住,‘s’ 和 ‘e’ 可以用于返回期间开始或结束的时间戳:
代码语言:javascript复制In [420]: ps.to_timestamp("D", how="s")
Out[420]:
2012-01-01 1.931253
2012-02-01 -0.184594
2012-03-01 0.249656
2012-04-01 -0.978151
2012-05-01 -0.873389
Freq: MS, dtype: float64
在期间和时间戳之间进行转换可以使用一些方便的算术函数。在以下示例中,我们将将年终在十一月的季度频率转换为季度结束后一个月的月底上午 9 点:
代码语言:javascript复制In [421]: prng = pd.period_range("1990Q1", "2000Q4", freq="Q-NOV")
In [422]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [423]: ts.index = (prng.asfreq("M", "e") 1).asfreq("h", "s") 9
In [424]: ts.head()
Out[424]:
1990-03-01 09:00 -0.109291
1990-06-01 09:00 -0.637235
1990-09-01 09:00 -1.735925
1990-12-01 09:00 2.096946
1991-03-01 09:00 -1.039926
Freq: h, dtype: float64
```## 表示超出范围的时间段
如果您的数据超出了 `Timestamp` 的范围,请参阅时间戳限制,然后您可以使用 `PeriodIndex` 和/或 `Periods` 的 `Series` 进行计算。
```py
In [425]: span = pd.period_range("1215-01-01", "1381-01-01", freq="D")
In [426]: span
Out[426]:
PeriodIndex(['1215-01-01', '1215-01-02', '1215-01-03', '1215-01-04',
'1215-01-05', '1215-01-06', '1215-01-07', '1215-01-08',
'1215-01-09', '1215-01-10',
...
'1380-12-23', '1380-12-24', '1380-12-25', '1380-12-26',
'1380-12-27', '1380-12-28', '1380-12-29', '1380-12-30',
'1380-12-31', '1381-01-01'],
dtype='period[D]', length=60632)
要从基于 int64
的 YYYYMMDD 表示形式转换。
In [427]: s = pd.Series([20121231, 20141130, 99991231])
In [428]: s
Out[428]:
0 20121231
1 20141130
2 99991231
dtype: int64
In [429]: def conv(x):
.....: return pd.Period(year=x // 10000, month=x // 100 % 100, day=x % 100, freq="D")
.....:
In [430]: s.apply(conv)
Out[430]:
0 2012-12-31
1 2014-11-30
2 9999-12-31
dtype: period[D]
In [431]: s.apply(conv)[2]
Out[431]: Period('9999-12-31', 'D')
这些可以轻松转换为 PeriodIndex
:
In [432]: span = pd.PeriodIndex(s.apply(conv))
In [433]: span
Out[433]: PeriodIndex(['2012-12-31', '2014-11-30', '9999-12-31'], dtype='period[D]')
```## 时区处理
pandas 提供了丰富的支持,使用 `pytz` 和 `dateutil` 库或标准库中的 [`datetime.timezone`](https://docs.python.org/3/library/datetime.html#datetime.timezone "(在 Python v3.12 中)") 对象,可以处理不同时区的时间戳。
### 处理时区
默认情况下,pandas 对象不考虑时区:
```py
In [434]: rng = pd.date_range("3/6/2012 00:00", periods=15, freq="D")
In [435]: rng.tz is None
Out[435]: True
要将这些日期本地化到时区(为一个无时区日期分配特定的时区),您可以使用 tz_localize
方法或 date_range()
中的 tz
关键字参数,Timestamp
或 DatetimeIndex
。您可以传递 pytz
或 dateutil
时区对象或 Olson 时区数据库字符串。Olson 时区字符串将默认返回 pytz
时区对象。要返回 dateutil
时区对象,请在字符串之前添加 dateutil/
。
- 在
pytz
中,您可以使用from pytz import common_timezones, all_timezones
找到常见(以及不太常见)的时区列表。 -
dateutil
使用操作系统时区,因此没有固定的列表可用。对于常见时区,名称与pytz
相同。
In [436]: import dateutil
# pytz
In [437]: rng_pytz = pd.date_range("3/6/2012 00:00", periods=3, freq="D", tz="Europe/London")
In [438]: rng_pytz.tz
Out[438]: <DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>
# dateutil
In [439]: rng_dateutil = pd.date_range("3/6/2012 00:00", periods=3, freq="D")
In [440]: rng_dateutil = rng_dateutil.tz_localize("dateutil/Europe/London")
In [441]: rng_dateutil.tz
Out[441]: tzfile('/usr/share/zoneinfo/Europe/London')
# dateutil - utc special case
In [442]: rng_utc = pd.date_range(
.....: "3/6/2012 00:00",
.....: periods=3,
.....: freq="D",
.....: tz=dateutil.tz.tzutc(),
.....: )
.....:
In [443]: rng_utc.tz
Out[443]: tzutc()
代码语言:javascript复制# datetime.timezone
In [444]: rng_utc = pd.date_range(
.....: "3/6/2012 00:00",
.....: periods=3,
.....: freq="D",
.....: tz=datetime.timezone.utc,
.....: )
.....:
In [445]: rng_utc.tz
Out[445]: datetime.timezone.utc
请注意,UTC
时区在dateutil
中是一个特殊情况,应该显式构造为dateutil.tz.tzutc
的实例。您也可以首先显式构造其他时区对象。
In [446]: import pytz
# pytz
In [447]: tz_pytz = pytz.timezone("Europe/London")
In [448]: rng_pytz = pd.date_range("3/6/2012 00:00", periods=3, freq="D")
In [449]: rng_pytz = rng_pytz.tz_localize(tz_pytz)
In [450]: rng_pytz.tz == tz_pytz
Out[450]: True
# dateutil
In [451]: tz_dateutil = dateutil.tz.gettz("Europe/London")
In [452]: rng_dateutil = pd.date_range("3/6/2012 00:00", periods=3, freq="D", tz=tz_dateutil)
In [453]: rng_dateutil.tz == tz_dateutil
Out[453]: True
要将一个时区感知的 pandas 对象从一个时区转换到另一个时区,您可以使用tz_convert
方法。
In [454]: rng_pytz.tz_convert("US/Eastern")
Out[454]:
DatetimeIndex(['2012-03-05 19:00:00-05:00', '2012-03-06 19:00:00-05:00',
'2012-03-07 19:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
注意
当使用pytz
时区时,DatetimeIndex
将构造一个不同的时区对象,而对于相同的时区输入,Timestamp
将构造一个不同的时区对象。一个DatetimeIndex
可以保存一组具有不同 UTC 偏移的Timestamp
对象,而不能简洁地由一个pytz
时区实例表示,而一个Timestamp
代表一个具有特定 UTC 偏移的时间点。
In [455]: dti = pd.date_range("2019-01-01", periods=3, freq="D", tz="US/Pacific")
In [456]: dti.tz
Out[456]: <DstTzInfo 'US/Pacific' LMT-1 day, 16:07:00 STD>
In [457]: ts = pd.Timestamp("2019-01-01", tz="US/Pacific")
In [458]: ts.tz
Out[458]: <DstTzInfo 'US/Pacific' PST-1 day, 16:00:00 STD>
警告
要谨慎处理库之间的转换。对于一些时区,pytz
和dateutil
对时区的定义不同。这对于不寻常的时区比‘标准’时区如US/Eastern
更有问题。
警告
请注意,跨时间区库版本的时区定义可能不被视为相等。这可能会在使用一个版本本地化的存储数据并在不同版本上操作时出现问题。请参见这里如何处理这种情况。
警告
对于pytz
时区,直接将一个时区对象传递给datetime.datetime
构造函数是不正确的(例如,datetime.datetime(2011, 1, 1, tzinfo=pytz.timezone('US/Eastern'))
)。相反,需要使用pytz
时区对象上的localize
方法对日期时间进行本地化。
警告
请注意,对于未来的时间,任何时区库都无法保证正确的时区(和 UTC)之间的转换,因为时区与 UTC 的偏移可能会被各自的政府更改。
警告
如果您使用的日期超过 2038-01-18,由于底层库中当前存在的年 2038 问题导致的缺陷,时区感知日期的夏令时(DST)调整将不会被应用。如果底层库被修复,DST 转换将会被应用。
例如,对于两个处于英国夏令时的日期(通常为 GMT 1),以下断言都为真:
代码语言:javascript复制In [459]: d_2037 = "2037-03-31T010101"
In [460]: d_2038 = "2038-03-31T010101"
In [461]: DST = "Europe/London"
In [462]: assert pd.Timestamp(d_2037, tz=DST) != pd.Timestamp(d_2037, tz="GMT")
In [463]: assert pd.Timestamp(d_2038, tz=DST) == pd.Timestamp(d_2038, tz="GMT")
在幕后,所有时间戳都以 UTC 存储。来自时区感知的DatetimeIndex
或Timestamp
的值将被本地化到时区。然而,具有相同 UTC 值的时间戳即使在不同时区中仍被视为相等:
In [464]: rng_eastern = rng_utc.tz_convert("US/Eastern")
In [465]: rng_berlin = rng_utc.tz_convert("Europe/Berlin")
In [466]: rng_eastern[2]
Out[466]: Timestamp('2012-03-07 19:00:00-0500', tz='US/Eastern')
In [467]: rng_berlin[2]
Out[467]: Timestamp('2012-03-08 01:00:00 0100', tz='Europe/Berlin')
In [468]: rng_eastern[2] == rng_berlin[2]
Out[468]: True
不同时区中的Series
之间的操作将产生 UTC Series
,将数据对齐到 UTC 时间戳上:
In [469]: ts_utc = pd.Series(range(3), pd.date_range("20130101", periods=3, tz="UTC"))
In [470]: eastern = ts_utc.tz_convert("US/Eastern")
In [471]: berlin = ts_utc.tz_convert("Europe/Berlin")
In [472]: result = eastern berlin
In [473]: result
Out[473]:
2013-01-01 00:00:00 00:00 0
2013-01-02 00:00:00 00:00 2
2013-01-03 00:00:00 00:00 4
Freq: D, dtype: int64
In [474]: result.index
Out[474]:
DatetimeIndex(['2013-01-01 00:00:00 00:00', '2013-01-02 00:00:00 00:00',
'2013-01-03 00:00:00 00:00'],
dtype='datetime64[ns, UTC]', freq='D')
要删除时区信息,请使用tz_localize(None)
或tz_convert(None)
。tz_localize(None)
将删除时区,得到本地时间表示。tz_convert(None)
将在转换为 UTC 时间后删除时区。
In [475]: didx = pd.date_range(start="2014-08-01 09:00", freq="h", periods=3, tz="US/Eastern")
In [476]: didx
Out[476]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
'2014-08-01 11:00:00-04:00'],
dtype='datetime64[ns, US/Eastern]', freq='h')
In [477]: didx.tz_localize(None)
Out[477]:
DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
'2014-08-01 11:00:00'],
dtype='datetime64[ns]', freq=None)
In [478]: didx.tz_convert(None)
Out[478]:
DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00'],
dtype='datetime64[ns]', freq='h')
# tz_convert(None) is identical to tz_convert('UTC').tz_localize(None)
In [479]: didx.tz_convert("UTC").tz_localize(None)
Out[479]:
DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00'],
dtype='datetime64[ns]', freq=None)
Fold
对于模糊时间,pandas 支持显式指定仅关键字 fold 参数。由于夏令时,当从夏季时间转换到冬季时间时,一个挂钟时间可能发生两次;fold 描述 datetime-like 是否对应于挂钟第一次(0)或第二次(1)命中模糊时间。仅支持从 naive datetime.datetime
(有关详细信息,请参阅datetime 文档)或从Timestamp
构造或从组件构造(见下文)。仅支持dateutil
时区(请参阅dateutil 文档以了解处理模糊日期时间的dateutil
方法),因为pytz
时区不支持 fold(请参阅pytz 文档以了解pytz
如何处理模糊日期时间的详细信息)。要使用pytz
本地化模糊日期时间,请使用Timestamp.tz_localize()
。一般来说,如果需要直接控制处理模糊日期时间的方式,我们建议在本地化模糊日期时间时依赖于Timestamp.tz_localize()
。
In [480]: pd.Timestamp(
.....: datetime.datetime(2019, 10, 27, 1, 30, 0, 0),
.....: tz="dateutil/Europe/London",
.....: fold=0,
.....: )
.....:
Out[480]: Timestamp('2019-10-27 01:30:00 0100', tz='dateutil//usr/share/zoneinfo/Europe/London')
In [481]: pd.Timestamp(
.....: year=2019,
.....: month=10,
.....: day=27,
.....: hour=1,
.....: minute=30,
.....: tz="dateutil/Europe/London",
.....: fold=1,
.....: )
.....:
Out[481]: Timestamp('2019-10-27 01:30:00 0000', tz='dateutil//usr/share/zoneinfo/Europe/London')
```### 本地化时的模糊时间
`tz_localize`可能无法确定时间戳的 UTC 偏移量,因为本地时区的夏令时导致某些时间在一天内发生两次(“时钟回拨”)。以下选项可用:
`'raise'`:引发`pytz.AmbiguousTimeError`(默认行为)
`'infer'`:尝试根据时间戳的单调性确定正确的偏移量
`'NaT'`:用`NaT`替换模糊时间
`bool`:`True`表示 DST 时间,`False`表示非 DST 时间。支持用于时间序列的`bool`值的类似数组。
```py
In [482]: rng_hourly = pd.DatetimeIndex(
.....: ["11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00"]
.....: )
.....:
这将失败,因为存在模糊的时间('11/06/2011 01:00'
)
In [483]: rng_hourly.tz_localize('US/Eastern')
---------------------------------------------------------------------------
AmbiguousTimeError Traceback (most recent call last)
Cell In[483], line 1
----> 1 rng_hourly.tz_localize('US/Eastern')
File ~/work/pandas/pandas/pandas/core/indexes/datetimes.py:293, in DatetimeIndex.tz_localize(self, tz, ambiguous, nonexistent)
286 @doc(DatetimeArray.tz_localize)
287 def tz_localize(
288 self,
(...)
291 nonexistent: TimeNonexistent = "raise",
292 ) -> Self:
--> 293 arr = self._data.tz_localize(tz, ambiguous, nonexistent)
294 return type(self)._simple_new(arr, name=self.name)
File ~/work/pandas/pandas/pandas/core/arrays/_mixins.py:81, in ravel_compat.<locals>.method(self, *args, **kwargs)
78 @wraps(meth)
79 def method(self, *args, **kwargs):
80 if self.ndim == 1:
---> 81 return meth(self, *args, **kwargs)
83 flags = self._ndarray.flags
84 flat = self.ravel("K")
File ~/work/pandas/pandas/pandas/core/arrays/datetimes.py:1088, in DatetimeArray.tz_localize(self, tz, ambiguous, nonexistent)
1085 tz = timezones.maybe_get_tz(tz)
1086 # Convert to UTC
-> 1088 new_dates = tzconversion.tz_localize_to_utc(
1089 self.asi8,
1090 tz,
1091 ambiguous=ambiguous,
1092 nonexistent=nonexistent,
1093 creso=self._creso,
1094 )
1095 new_dates_dt64 = new_dates.view(f"M8[{self.unit}]")
1096 dtype = tz_to_dtype(tz, unit=self.unit)
File tzconversion.pyx:371, in pandas._libs.tslibs.tzconversion.tz_localize_to_utc()
AmbiguousTimeError: Cannot infer dst time from 2011-11-06 01:00:00, try using the 'ambiguous' argument
通过指定以下内容来处理这些模糊的时间。
代码语言:javascript复制In [484]: rng_hourly.tz_localize("US/Eastern", ambiguous="infer")
Out[484]:
DatetimeIndex(['2011-11-06 00:00:00-04:00', '2011-11-06 01:00:00-04:00',
'2011-11-06 01:00:00-05:00', '2011-11-06 02:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
In [485]: rng_hourly.tz_localize("US/Eastern", ambiguous="NaT")
Out[485]:
DatetimeIndex(['2011-11-06 00:00:00-04:00', 'NaT', 'NaT',
'2011-11-06 02:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
In [486]: rng_hourly.tz_localize("US/Eastern", ambiguous=[True, True, False, False])
Out[486]:
DatetimeIndex(['2011-11-06 00:00:00-04:00', '2011-11-06 01:00:00-04:00',
'2011-11-06 01:00:00-05:00', '2011-11-06 02:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
```### 本地化不存在的时间
DST 转换也可能会将当地时间向前调整 1 小时,从而创建不存在的本地时间(“时钟向前调整”)。可以通过`nonexistent`参数控制具有不存在时间的时间序列的本地化行为。可用的选项如下:
`'raise'`:引发`pytz.NonExistentTimeError`(默认行为)
`'NaT'`:用`NaT`替换不存在的时间
`'shift_forward'`:将不存在的时间向前移动到最近的真实时间
`'shift_backward'`:将不存在的时间向后移动到最近的真实时间
timedelta 对象:通过 timedelta 持续时间移动不存在的时间
```py
In [487]: dti = pd.date_range(start="2015-03-29 02:30:00", periods=3, freq="h")
# 2:30 is a nonexistent time
本地化不存在的时间将默认引发错误。
代码语言:javascript复制In [488]: dti.tz_localize('Europe/Warsaw')
---------------------------------------------------------------------------
NonExistentTimeError Traceback (most recent call last)
Cell In[488], line 1
----> 1 dti.tz_localize('Europe/Warsaw')
File ~/work/pandas/pandas/pandas/core/indexes/datetimes.py:293, in DatetimeIndex.tz_localize(self, tz, ambiguous, nonexistent)
286 @doc(DatetimeArray.tz_localize)
287 def tz_localize(
288 self,
(...)
291 nonexistent: TimeNonexistent = "raise",
292 ) -> Self:
--> 293 arr = self._data.tz_localize(tz, ambiguous, nonexistent)
294 return type(self)._simple_new(arr, name=self.name)
File ~/work/pandas/pandas/pandas/core/arrays/_mixins.py:81, in ravel_compat.<locals>.method(self, *args, **kwargs)
78 @wraps(meth)
79 def method(self, *args, **kwargs):
80 if self.ndim == 1:
---> 81 return meth(self, *args, **kwargs)
83 flags = self._ndarray.flags
84 flat = self.ravel("K")
File ~/work/pandas/pandas/pandas/core/arrays/datetimes.py:1088, in DatetimeArray.tz_localize(self, tz, ambiguous, nonexistent)
1085 tz = timezones.maybe_get_tz(tz)
1086 # Convert to UTC
-> 1088 new_dates = tzconversion.tz_localize_to_utc(
1089 self.asi8,
1090 tz,
1091 ambiguous=ambiguous,
1092 nonexistent=nonexistent,
1093 creso=self._creso,
1094 )
1095 new_dates_dt64 = new_dates.view(f"M8[{self.unit}]")
1096 dtype = tz_to_dtype(tz, unit=self.unit)
File tzconversion.pyx:431, in pandas._libs.tslibs.tzconversion.tz_localize_to_utc()
NonExistentTimeError: 2015-03-29 02:30:00
将不存在的时间转换为NaT
或移动时间。
In [489]: dti
Out[489]:
DatetimeIndex(['2015-03-29 02:30:00', '2015-03-29 03:30:00',
'2015-03-29 04:30:00'],
dtype='datetime64[ns]', freq='h')
In [490]: dti.tz_localize("Europe/Warsaw", nonexistent="shift_forward")
Out[490]:
DatetimeIndex(['2015-03-29 03:00:00 02:00', '2015-03-29 03:30:00 02:00',
'2015-03-29 04:30:00 02:00'],
dtype='datetime64[ns, Europe/Warsaw]', freq=None)
In [491]: dti.tz_localize("Europe/Warsaw", nonexistent="shift_backward")
Out[491]:
DatetimeIndex(['2015-03-29 01:59:59.999999999 01:00',
'2015-03-29 03:30:00 02:00',
'2015-03-29 04:30:00 02:00'],
dtype='datetime64[ns, Europe/Warsaw]', freq=None)
In [492]: dti.tz_localize("Europe/Warsaw", nonexistent=pd.Timedelta(1, unit="h"))
Out[492]:
DatetimeIndex(['2015-03-29 03:30:00 02:00', '2015-03-29 03:30:00 02:00',
'2015-03-29 04:30:00 02:00'],
dtype='datetime64[ns, Europe/Warsaw]', freq=None)
In [493]: dti.tz_localize("Europe/Warsaw", nonexistent="NaT")
Out[493]:
DatetimeIndex(['NaT', '2015-03-29 03:30:00 02:00',
'2015-03-29 04:30:00 02:00'],
dtype='datetime64[ns, Europe/Warsaw]', freq=None)
```### 时区系列操作
具有**naive**值的`Series`以`datetime64[ns]`的 dtype 表示。
```py
In [494]: s_naive = pd.Series(pd.date_range("20130101", periods=3))
In [495]: s_naive
Out[495]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
dtype: datetime64[ns]
具有aware值的Series
以datetime64[ns, tz]
的 dtype 表示,其中tz
是时区
In [496]: s_aware = pd.Series(pd.date_range("20130101", periods=3, tz="US/Eastern"))
In [497]: s_aware
Out[497]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]
这两个Series
的时区信息可以通过.dt
访问器进行操作,参见 dt 访问器部分。
例如,将 naive 时间戳本地化和转换为时区感知。
代码语言:javascript复制In [498]: s_naive.dt.tz_localize("UTC").dt.tz_convert("US/Eastern")
Out[498]:
0 2012-12-31 19:00:00-05:00
1 2013-01-01 19:00:00-05:00
2 2013-01-02 19:00:00-05:00
dtype: datetime64[ns, US/Eastern]
时间区域信息也可以使用astype
方法进行操作。该方法可以在不同的时区感知 dtype 之间进行转换。
# convert to a new time zone
In [499]: s_aware.astype("datetime64[ns, CET]")
Out[499]:
0 2013-01-01 06:00:00 01:00
1 2013-01-02 06:00:00 01:00
2 2013-01-03 06:00:00 01:00
dtype: datetime64[ns, CET]
注意
在Series
上使用Series.to_numpy()
,返回数据的 NumPy 数组。 NumPy 当前不支持时区(即使在本地时区打印!),因此对于时区感知数据,将返回时间戳的对象数组:
In [500]: s_naive.to_numpy()
Out[500]:
array(['2013-01-01T00:00:00.000000000', '2013-01-02T00:00:00.000000000',
'2013-01-03T00:00:00.000000000'], dtype='datetime64[ns]')
In [501]: s_aware.to_numpy()
Out[501]:
array([Timestamp('2013-01-01 00:00:00-0500', tz='US/Eastern'),
Timestamp('2013-01-02 00:00:00-0500', tz='US/Eastern'),
Timestamp('2013-01-03 00:00:00-0500', tz='US/Eastern')],
dtype=object)
通过转换为时间戳的对象数组,它保留了时区信息。例如,当转换回 Series 时:
代码语言:javascript复制In [502]: pd.Series(s_aware.to_numpy())
Out[502]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]
但是,如果您想要一个实际的 NumPydatetime64[ns]
数组(其值已转换为 UTC),而不是对象数组,您可以指定dtype
参数:
In [503]: s_aware.to_numpy(dtype="datetime64[ns]")
Out[503]:
array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000',
'2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')
```## 概述
pandas 捕获了 4 个通用的与时间相关的概念:
1. 日期时间:具有时区支持的特定日期和时间。类似于标准库中的`datetime.datetime`。
1. 时间增量:绝对时间持续时间。类似于标准库中的`datetime.timedelta`。
1. 时间跨度:由时间点及其关联频率定义的时间跨度。
1. 日期偏移量:一种尊重日历算术的相对时间持续。类似于`dateutil`包中的`dateutil.relativedelta.relativedelta`。
| 概念 | 标量类 | 数组类 | pandas 数据类型 | 主要创建方法 |
| --- | --- | --- | --- | --- |
| 日期时间 | `Timestamp` | `DatetimeIndex` | `datetime64[ns]`或`datetime64[ns, tz]` | `to_datetime`或`date_range` |
| 时间增量 | `Timedelta` | `TimedeltaIndex` | `timedelta64[ns]` | `to_timedelta`或`timedelta_range` |
| 时间跨度 | `Period` | `PeriodIndex` | `period[freq]` | `Period`或`period_range` |
| 日期偏移量 | `DateOffset` | `None` | `None` | `DateOffset` |
对于时间序列数据,习惯上将时间分量表示为`Series`或`DataFrame`的索引,以便可以针对时间元素进行操作。
```py
In [19]: pd.Series(range(3), index=pd.date_range("2000", freq="D", periods=3))
Out[19]:
2000-01-01 0
2000-01-02 1
2000-01-03 2
Freq: D, dtype: int64
然而,Series
和DataFrame
也可以直接支持时间组件作为数据本身。
In [20]: pd.Series(pd.date_range("2000", freq="D", periods=3))
Out[20]:
0 2000-01-01
1 2000-01-02
2 2000-01-03
dtype: datetime64[ns]
当传递到这些构造函数时,Series
和DataFrame
支持datetime
、timedelta
和Period
数据的扩展数据类型支持和功能。但是,DateOffset
数据将以object
数据存储。
In [21]: pd.Series(pd.period_range("1/1/2011", freq="M", periods=3))
Out[21]:
0 2011-01
1 2011-02
2 2011-03
dtype: period[M]
In [22]: pd.Series([pd.DateOffset(1), pd.DateOffset(2)])
Out[22]:
0 <DateOffset>
1 <2 * DateOffsets>
dtype: object
In [23]: pd.Series(pd.date_range("1/1/2011", freq="ME", periods=3))
Out[23]:
0 2011-01-31
1 2011-02-28
2 2011-03-31
dtype: datetime64[ns]
最后,pandas 将空日期时间、时间增量和时间跨度表示为NaT
,这对于表示缺失或空日期值非常有用,并且与np.nan
对于浮点数据的行为类似。
In [24]: pd.Timestamp(pd.NaT)
Out[24]: NaT
In [25]: pd.Timedelta(pd.NaT)
Out[25]: NaT
In [26]: pd.Period(pd.NaT)
Out[26]: NaT
# Equality acts as np.nan would
In [27]: pd.NaT == pd.NaT
Out[27]: False
时间戳与时间跨度
时间戳数据是与时间点关联值的最基本类型的时间序列数据。对于 pandas 对象,这意味着使用时间点。
代码语言:javascript复制In [28]: import datetime
In [29]: pd.Timestamp(datetime.datetime(2012, 5, 1))
Out[29]: Timestamp('2012-05-01 00:00:00')
In [30]: pd.Timestamp("2012-05-01")
Out[30]: Timestamp('2012-05-01 00:00:00')
In [31]: pd.Timestamp(2012, 5, 1)
Out[31]: Timestamp('2012-05-01 00:00:00')
然而,在许多情况下,将变量的变化与时间跨度关联起来更自然。由Period
表示的跨度可以明确指定,也可以从日期时间字符串格式中推断出来。
例如:
代码语言:javascript复制In [32]: pd.Period("2011-01")
Out[32]: Period('2011-01', 'M')
In [33]: pd.Period("2012-05", freq="D")
Out[33]: Period('2012-05-01', 'D')
Timestamp
和Period
可以用作索引。Timestamp
和Period
的列表将自动强制转换为DatetimeIndex
和PeriodIndex
。
In [34]: dates = [
....: pd.Timestamp("2012-05-01"),
....: pd.Timestamp("2012-05-02"),
....: pd.Timestamp("2012-05-03"),
....: ]
....:
In [35]: ts = pd.Series(np.random.randn(3), dates)
In [36]: type(ts.index)
Out[36]: pandas.core.indexes.datetimes.DatetimeIndex
In [37]: ts.index
Out[37]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)
In [38]: ts
Out[38]:
2012-05-01 0.469112
2012-05-02 -0.282863
2012-05-03 -1.509059
dtype: float64
In [39]: periods = [pd.Period("2012-01"), pd.Period("2012-02"), pd.Period("2012-03")]
In [40]: ts = pd.Series(np.random.randn(3), periods)
In [41]: type(ts.index)
Out[41]: pandas.core.indexes.period.PeriodIndex
In [42]: ts.index
Out[42]: PeriodIndex(['2012-01', '2012-02', '2012-03'], dtype='period[M]')
In [43]: ts
Out[43]:
2012-01 -1.135632
2012-02 1.212112
2012-03 -0.173215
Freq: M, dtype: float64
pandas 允许您捕获两种表示形式并在它们之间进行转换。在底层,pandas 使用Timestamp
的实例表示时间戳,并使用DatetimeIndex
的实例表示时间戳序列。对于常规时间跨度,pandas 使用Period
对象表示标量值,并使用PeriodIndex
表示跨度序列。未来版本将更好地支持具有任意开始和结束点的不规则间隔。
转换为时间戳
要将Series
或类似列表的日期对象(例如字符串、时间戳或混合对象)转换为日期时间对象,您可以使用to_datetime
函数。当传递一个Series
时,它会返回一个相同索引的Series
,而列表则会被转换为DatetimeIndex
:
In [44]: pd.to_datetime(pd.Series(["Jul 31, 2009", "Jan 10, 2010", None]))
Out[44]:
0 2009-07-31
1 2010-01-10
2 NaT
dtype: datetime64[ns]
In [45]: pd.to_datetime(["2005/11/23", "2010/12/31"])
Out[45]: DatetimeIndex(['2005-11-23', '2010-12-31'], dtype='datetime64[ns]', freq=None)
如果使用以日期开头的日期(即欧洲风格),您可以传递dayfirst
标志:
In [46]: pd.to_datetime(["04-01-2012 10:00"], dayfirst=True)
Out[46]: DatetimeIndex(['2012-01-04 10:00:00'], dtype='datetime64[ns]', freq=None)
In [47]: pd.to_datetime(["04-14-2012 10:00"], dayfirst=True)
Out[47]: DatetimeIndex(['2012-04-14 10:00:00'], dtype='datetime64[ns]', freq=None)
警告
如上例所示,dayfirst
不是严格的。如果日期无法解析为以天为首的日期,它将被解析为dayfirst
为False
,同时还会引发警告。
如果将单个字符串传递给to_datetime
,它将返回单个Timestamp
。Timestamp
也可以接受字符串输入,但它不接受像dayfirst
或format
这样的字符串解析选项,因此如果需要这些选项,请使用to_datetime
。
In [48]: pd.to_datetime("2010/11/12")
Out[48]: Timestamp('2010-11-12 00:00:00')
In [49]: pd.Timestamp("2010/11/12")
Out[49]: Timestamp('2010-11-12 00:00:00')
您也可以直接使用DatetimeIndex
构造函数:
In [50]: pd.DatetimeIndex(["2018-01-01", "2018-01-03", "2018-01-05"])
Out[50]: DatetimeIndex(['2018-01-01', '2018-01-03', '2018-01-05'], dtype='datetime64[ns]', freq=None)
可以传递字符串“infer”以设置索引的频率为创建时的推断频率:
代码语言:javascript复制In [51]: pd.DatetimeIndex(["2018-01-01", "2018-01-03", "2018-01-05"], freq="infer")
Out[51]: DatetimeIndex(['2018-01-01', '2018-01-03', '2018-01-05'], dtype='datetime64[ns]', freq='2D')
提供格式参数
除了必需的日期时间字符串之外,还可以传递一个format
参数以确保特定的解析。这也可能显著加快转换速度。
In [52]: pd.to_datetime("2010/11/12", format="%Y/%m/%d")
Out[52]: Timestamp('2010-11-12 00:00:00')
In [53]: pd.to_datetime("12-11-2010 00:00", format="%d-%m-%Y %H:%M")
Out[53]: Timestamp('2010-11-12 00:00:00')
有关在指定format
选项时可用的选项的更多信息,请参阅 Python datetime 文档。
从多个 DataFrame 列组装日期时间
您还可以传递一个整数或字符串列的DataFrame
以组装为Timestamps
的Series
。
In [54]: df = pd.DataFrame(
....: {"year": [2015, 2016], "month": [2, 3], "day": [4, 5], "hour": [2, 3]}
....: )
....:
In [55]: pd.to_datetime(df)
Out[55]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]
您可以只传递您需要组装的列。
代码语言:javascript复制In [56]: pd.to_datetime(df[["year", "month", "day"]])
Out[56]:
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
pd.to_datetime
会查找列名中 datetime 组件的标准标识,包括:
- 必需的:
year
、month
、day
- 可选的:
hour
、minute
、second
、millisecond
、microsecond
、nanosecond
无效的数据
默认行为errors='raise'
是在无法解析时引发异常:
In [57]: pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[57], line 1
----> 1 pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
File ~/work/pandas/pandas/pandas/core/tools/datetimes.py:1099, in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)
1097 result = _convert_and_box_cache(argc, cache_array)
1098 else:
-> 1099 result = convert_listlike(argc, format)
1100 else:
1101 result = convert_listlike(np.array([arg]), format)[0]
File ~/work/pandas/pandas/pandas/core/tools/datetimes.py:433, in _convert_listlike_datetimes(arg, format, name, utc, unit, errors, dayfirst, yearfirst, exact)
431 # `format` could be inferred, or user didn't ask for mixed-format parsing.
432 if format is not None and format != "mixed":
--> 433 return _array_strptime_with_fallback(arg, name, utc, format, exact, errors)
435 result, tz_parsed = objects_to_datetime64(
436 arg,
437 dayfirst=dayfirst,
(...)
441 allow_object=True,
442 )
444 if tz_parsed is not None:
445 # We can take a shortcut since the datetime64 numpy array
446 # is in UTC
File ~/work/pandas/pandas/pandas/core/tools/datetimes.py:467, in _array_strptime_with_fallback(arg, name, utc, fmt, exact, errors)
456 def _array_strptime_with_fallback(
457 arg,
458 name,
(...)
462 errors: str,
463 ) -> Index:
464 """
465 Call array_strptime, with fallback behavior depending on 'errors'.
466 """
--> 467 result, tz_out = array_strptime(arg, fmt, exact=exact, errors=errors, utc=utc)
468 if tz_out is not None:
469 unit = np.datetime_data(result.dtype)[0]
File strptime.pyx:501, in pandas._libs.tslibs.strptime.array_strptime()
File strptime.pyx:451, in pandas._libs.tslibs.strptime.array_strptime()
File strptime.pyx:583, in pandas._libs.tslibs.strptime._parse_with_format()
ValueError: time data "asd" doesn't match format "%Y/%m/%d", at position 1. You might want to try:
- passing `format` if your strings have a consistent format;
- passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format;
- passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this.
传递errors='coerce'
以将无法解析的数据转换为NaT
(不是时间):
In [58]: pd.to_datetime(["2009/07/31", "asd"], errors="coerce")
Out[58]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)
纪元时间戳
pandas 支持将整数或浮点数纪元时间转换为Timestamp
和DatetimeIndex
。默认单位是纳秒,因为Timestamp
对象在内部存储时是以纳秒为单位的。然而,纪元时间通常以另一个单位存储,可以指定。这些是从origin
参数指定的起始点计算出来的。
In [59]: pd.to_datetime(
....: [1349720105, 1349806505, 1349892905, 1349979305, 1350065705], unit="s"
....: )
....:
Out[59]:
DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',
'2012-10-10 18:15:05', '2012-10-11 18:15:05',
'2012-10-12 18:15:05'],
dtype='datetime64[ns]', freq=None)
In [60]: pd.to_datetime(
....: [1349720105100, 1349720105200, 1349720105300, 1349720105400, 1349720105500],
....: unit="ms",
....: )
....:
Out[60]:
DatetimeIndex(['2012-10-08 18:15:05.100000', '2012-10-08 18:15:05.200000',
'2012-10-08 18:15:05.300000', '2012-10-08 18:15:05.400000',
'2012-10-08 18:15:05.500000'],
dtype='datetime64[ns]', freq=None)
注意
unit
参数不使用与上述讨论的format
参数相同的字符串)。 可用单位在pandas.to_datetime()
的文档中列出。
使用tz
参数指定了 epoch 时间戳的Timestamp
或DatetimeIndex
构造会引发 ValueError。如果你有另一个时区中的墙上时间的 epoch,你可以将 epoch 读取为时区不敏感的时间戳,然后本地化到适当的时区:
In [61]: pd.Timestamp(1262347200000000000).tz_localize("US/Pacific")
Out[61]: Timestamp('2010-01-01 12:00:00-0800', tz='US/Pacific')
In [62]: pd.DatetimeIndex([1262347200000000000]).tz_localize("US/Pacific")
Out[62]: DatetimeIndex(['2010-01-01 12:00:00-08:00'], dtype='datetime64[ns, US/Pacific]', freq=None)
注意
Epoch 时间将四舍五入到最近的纳秒。
警告
将 float 型 epoch 时间转换可能导致不准确和意外的结果。Python floats在十进制中有约 15 位数字精度。在从浮点数到高精度Timestamp
的转换过程中进行舍入是不可避免的。实现精确精度的唯一方法是使用固定宽度的类型(例如 int64)。
In [63]: pd.to_datetime([1490195805.433, 1490195805.433502912], unit="s")
Out[63]: DatetimeIndex(['2017-03-22 15:16:45.433000088', '2017-03-22 15:16:45.433502913'], dtype='datetime64[ns]', freq=None)
In [64]: pd.to_datetime(1490195805433502912, unit="ns")
Out[64]: Timestamp('2017-03-22 15:16:45.433502912')
另请参阅
使用 origin 参数 ### 从时间戳到 epoch
要反转上述操作,即从Timestamp
转换为‘unix’ epoch:
In [65]: stamps = pd.date_range("2012-10-08 18:15:05", periods=4, freq="D")
In [66]: stamps
Out[66]:
DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',
'2012-10-10 18:15:05', '2012-10-11 18:15:05'],
dtype='datetime64[ns]', freq='D')
我们减去纪元(1970 年 1 月 1 日 UTC 午夜),然后进行“单位”(1 秒)的地板除法。
代码语言:javascript复制In [67]: (stamps - pd.Timestamp("1970-01-01")) // pd.Timedelta("1s")
Out[67]: Index([1349720105, 1349806505, 1349892905, 1349979305], dtype='int64')
```### 使用`origin`参数
使用`origin`参数,可以指定一个替代创建`DatetimeIndex`的起始点。例如,要使用 1960-01-01 作为起始日期:
```py
In [68]: pd.to_datetime([1, 2, 3], unit="D", origin=pd.Timestamp("1960-01-01"))
Out[68]: DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)
默认设置为origin='unix'
,默认为1970-01-01 00:00:00
。通常称为“unix 纪元”或 POSIX 时间。
In [69]: pd.to_datetime([1, 2, 3], unit="D")
Out[69]: DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[ns]', freq=None)
```### 提供 format 参数
除了必需的 datetime 字符串之外,还可以传递一个`format`参数以确保特定的解析。这也可能显著加快转换速度。
```py
In [52]: pd.to_datetime("2010/11/12", format="%Y/%m/%d")
Out[52]: Timestamp('2010-11-12 00:00:00')
In [53]: pd.to_datetime("12-11-2010 00:00", format="%d-%m-%Y %H:%M")
Out[53]: Timestamp('2010-11-12 00:00:00')
有关在指定format
选项时可用选择的更多信息,请参阅 Python datetime 文档。
从多个 DataFrame 列中组装 datetime
你还可以传递一个整数或字符串列的DataFrame
以组装成Timestamps
的Series
。
In [54]: df = pd.DataFrame(
....: {"year": [2015, 2016], "month": [2, 3], "day": [4, 5], "hour": [2, 3]}
....: )
....:
In [55]: pd.to_datetime(df)
Out[55]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]
你只需要传递你需要组装的列。
代码语言:javascript复制In [56]: pd.to_datetime(df[["year", "month", "day"]])
Out[56]:
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
pd.to_datetime
查找列名中 datetime 组件的标准设计,包括:
- 必需:
year
,month
,day
- 可选:
hour
,minute
,second
,millisecond
,microsecond
,nanosecond
无效数据
默认行为,errors='raise'
,是在不可解析时引发异常:
In [57]: pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[57], line 1
----> 1 pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
File ~/work/pandas/pandas/pandas/core/tools/datetimes.py:1099, in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)
1097 result = _convert_and_box_cache(argc, cache_array)
1098 else:
-> 1099 result = convert_listlike(argc, format)
1100 else:
1101 result = convert_listlike(np.array([arg]), format)[0]
File ~/work/pandas/pandas/pandas/core/tools/datetimes.py:433, in _convert_listlike_datetimes(arg, format, name, utc, unit, errors, dayfirst, yearfirst, exact)
431 # `format` could be inferred, or user didn't ask for mixed-format parsing.
432 if format is not None and format != "mixed":
--> 433 return _array_strptime_with_fallback(arg, name, utc, format, exact, errors)
435 result, tz_parsed = objects_to_datetime64(
436 arg,
437 dayfirst=dayfirst,
(...)
441 allow_object=True,
442 )
444 if tz_parsed is not None:
445 # We can take a shortcut since the datetime64 numpy array
446 # is in UTC
File ~/work/pandas/pandas/pandas/core/tools/datetimes.py:467, in _array_strptime_with_fallback(arg, name, utc, fmt, exact, errors)
456 def _array_strptime_with_fallback(
457 arg,
458 name,
(...)
462 errors: str,
463 ) -> Index:
464 """
465 Call array_strptime, with fallback behavior depending on 'errors'.
466 """
--> 467 result, tz_out = array_strptime(arg, fmt, exact=exact, errors=errors, utc=utc)
468 if tz_out is not None:
469 unit = np.datetime_data(result.dtype)[0]
File strptime.pyx:501, in pandas._libs.tslibs.strptime.array_strptime()
File strptime.pyx:451, in pandas._libs.tslibs.strptime.array_strptime()
File strptime.pyx:583, in pandas._libs.tslibs.strptime._parse_with_format()
ValueError: time data "asd" doesn't match format "%Y/%m/%d", at position 1. You might want to try:
- passing `format` if your strings have a consistent format;
- passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format;
- passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this.
传递errors='coerce'
以将不可解析的数据转换为NaT
(不是时间):
In [58]: pd.to_datetime(["2009/07/31", "asd"], errors="coerce")
Out[58]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)
Epoch 时间戳
pandas 支持将整数或浮点时代转换为Timestamp
和DatetimeIndex
。默认单位为纳秒,因为这是Timestamp
对象在内部存储的方式。但是,时代通常以另一个可以指定的unit
存储。这些是从由origin
参数指定的起始点计算得出的。
In [59]: pd.to_datetime(
....: [1349720105, 1349806505, 1349892905, 1349979305, 1350065705], unit="s"
....: )
....:
Out[59]:
DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',
'2012-10-10 18:15:05', '2012-10-11 18:15:05',
'2012-10-12 18:15:05'],
dtype='datetime64[ns]', freq=None)
In [60]: pd.to_datetime(
....: [1349720105100, 1349720105200, 1349720105300, 1349720105400, 1349720105500],
....: unit="ms",
....: )
....:
Out[60]:
DatetimeIndex(['2012-10-08 18:15:05.100000', '2012-10-08 18:15:05.200000',
'2012-10-08 18:15:05.300000', '2012-10-08 18:15:05.400000',
'2012-10-08 18:15:05.500000'],
dtype='datetime64[ns]', freq=None)
注意
unit
参数不使用与上面讨论的format
参数相同的字符串。可以在pandas.to_datetime()
的文档中找到可用的单位。
使用指定了tz
参数的时代时间戳构造Timestamp
或DatetimeIndex
将引发 ValueError。如果您在另一个时区的壁钟时间中有时代,您可以将时代读取为时区不可知的时间戳,然后本地化到适当的时区:
In [61]: pd.Timestamp(1262347200000000000).tz_localize("US/Pacific")
Out[61]: Timestamp('2010-01-01 12:00:00-0800', tz='US/Pacific')
In [62]: pd.DatetimeIndex([1262347200000000000]).tz_localize("US/Pacific")
Out[62]: DatetimeIndex(['2010-01-01 12:00:00-08:00'], dtype='datetime64[ns, US/Pacific]', freq=None)
注意
时代时间将四舍五入到最接近的纳秒。
警告
浮点时代转换可能导致不准确和意外的结果。 Python 浮点数 在十进制中具有约 15 位数字精度。在从浮点数转换为高精度Timestamp
时进行四舍五入是不可避免的。实现精确精度的唯一方法是使用固定宽度的类型(例如 int64)。
In [63]: pd.to_datetime([1490195805.433, 1490195805.433502912], unit="s")
Out[63]: DatetimeIndex(['2017-03-22 15:16:45.433000088', '2017-03-22 15:16:45.433502913'], dtype='datetime64[ns]', freq=None)
In [64]: pd.to_datetime(1490195805433502912, unit="ns")
Out[64]: Timestamp('2017-03-22 15:16:45.433502912')
另请参阅
使用起始参数
从时间戳到时代
要反转上述操作,即从Timestamp
转换为‘unix’时代:
In [65]: stamps = pd.date_range("2012-10-08 18:15:05", periods=4, freq="D")
In [66]: stamps
Out[66]:
DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',
'2012-10-10 18:15:05', '2012-10-11 18:15:05'],
dtype='datetime64[ns]', freq='D')
我们减去时代(1970 年 1 月 1 日 UTC 的午夜),然后除以“unit”(1 秒)。
代码语言:javascript复制In [67]: (stamps - pd.Timestamp("1970-01-01")) // pd.Timedelta("1s")
Out[67]: Index([1349720105, 1349806505, 1349892905, 1349979305], dtype='int64')
使用 origin
参数
使用origin
参数,可以为创建DatetimeIndex
指定替代起始点。例如,要使用 1960-01-01 作为起始日期:
In [68]: pd.to_datetime([1, 2, 3], unit="D", origin=pd.Timestamp("1960-01-01"))
Out[68]: DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)
默认设置为origin='unix'
,默认为1970-01-01 00:00:00
。通常称为“unix 时代”或 POSIX 时间。
In [69]: pd.to_datetime([1, 2, 3], unit="D")
Out[69]: DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[ns]', freq=None)
生成时间戳范围
要生成带有时间戳的索引,您可以使用DatetimeIndex
或Index
构造函数,并传递一个日期时间对象列表:
In [70]: dates = [
....: datetime.datetime(2012, 5, 1),
....: datetime.datetime(2012, 5, 2),
....: datetime.datetime(2012, 5, 3),
....: ]
....:
# Note the frequency information
In [71]: index = pd.DatetimeIndex(dates)
In [72]: index
Out[72]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)
# Automatically converted to DatetimeIndex
In [73]: index = pd.Index(dates)
In [74]: index
Out[74]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)
在实践中,这变得非常繁琐,因为我们经常需要一个非常长的索引,其中包含大量的时间戳。如果我们需要按照固定频率生成时间戳,我们可以使用date_range()
和bdate_range()
函数来创建DatetimeIndex
。date_range
的默认频率是日历日,而bdate_range
的默认频率是工作日:
In [75]: start = datetime.datetime(2011, 1, 1)
In [76]: end = datetime.datetime(2012, 1, 1)
In [77]: index = pd.date_range(start, end)
In [78]: index
Out[78]:
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04',
'2011-01-05', '2011-01-06', '2011-01-07', '2011-01-08',
'2011-01-09', '2011-01-10',
...
'2011-12-23', '2011-12-24', '2011-12-25', '2011-12-26',
'2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30',
'2011-12-31', '2012-01-01'],
dtype='datetime64[ns]', length=366, freq='D')
In [79]: index = pd.bdate_range(start, end)
In [80]: index
Out[80]:
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
'2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
'2011-01-13', '2011-01-14',
...
'2011-12-19', '2011-12-20', '2011-12-21', '2011-12-22',
'2011-12-23', '2011-12-26', '2011-12-27', '2011-12-28',
'2011-12-29', '2011-12-30'],
dtype='datetime64[ns]', length=260, freq='B')
诸如 date_range
和 bdate_range
这样的便利函数可以利用各种频率别名:
In [81]: pd.date_range(start, periods=1000, freq="ME")
Out[81]:
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-30',
'2011-05-31', '2011-06-30', '2011-07-31', '2011-08-31',
'2011-09-30', '2011-10-31',
...
'2093-07-31', '2093-08-31', '2093-09-30', '2093-10-31',
'2093-11-30', '2093-12-31', '2094-01-31', '2094-02-28',
'2094-03-31', '2094-04-30'],
dtype='datetime64[ns]', length=1000, freq='ME')
In [82]: pd.bdate_range(start, periods=250, freq="BQS")
Out[82]:
DatetimeIndex(['2011-01-03', '2011-04-01', '2011-07-01', '2011-10-03',
'2012-01-02', '2012-04-02', '2012-07-02', '2012-10-01',
'2013-01-01', '2013-04-01',
...
'2071-01-01', '2071-04-01', '2071-07-01', '2071-10-01',
'2072-01-01', '2072-04-01', '2072-07-01', '2072-10-03',
'2073-01-02', '2073-04-03'],
dtype='datetime64[ns]', length=250, freq='BQS-JAN')
date_range
和 bdate_range
可以轻松生成一系列日期范围,使用各种参数组合如 start
、end
、periods
和 freq
。开始和结束日期是严格包含的,因此不会生成指定范围之外的日期:
In [83]: pd.date_range(start, end, freq="BME")
Out[83]:
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',
'2011-05-31', '2011-06-30', '2011-07-29', '2011-08-31',
'2011-09-30', '2011-10-31', '2011-11-30', '2011-12-30'],
dtype='datetime64[ns]', freq='BME')
In [84]: pd.date_range(start, end, freq="W")
Out[84]:
DatetimeIndex(['2011-01-02', '2011-01-09', '2011-01-16', '2011-01-23',
'2011-01-30', '2011-02-06', '2011-02-13', '2011-02-20',
'2011-02-27', '2011-03-06', '2011-03-13', '2011-03-20',
'2011-03-27', '2011-04-03', '2011-04-10', '2011-04-17',
'2011-04-24', '2011-05-01', '2011-05-08', '2011-05-15',
'2011-05-22', '2011-05-29', '2011-06-05', '2011-06-12',
'2011-06-19', '2011-06-26', '2011-07-03', '2011-07-10',
'2011-07-17', '2011-07-24', '2011-07-31', '2011-08-07',
'2011-08-14', '2011-08-21', '2011-08-28', '2011-09-04',
'2011-09-11', '2011-09-18', '2011-09-25', '2011-10-02',
'2011-10-09', '2011-10-16', '2011-10-23', '2011-10-30',
'2011-11-06', '2011-11-13', '2011-11-20', '2011-11-27',
'2011-12-04', '2011-12-11', '2011-12-18', '2011-12-25',
'2012-01-01'],
dtype='datetime64[ns]', freq='W-SUN')
In [85]: pd.bdate_range(end=end, periods=20)
Out[85]:
DatetimeIndex(['2011-12-05', '2011-12-06', '2011-12-07', '2011-12-08',
'2011-12-09', '2011-12-12', '2011-12-13', '2011-12-14',
'2011-12-15', '2011-12-16', '2011-12-19', '2011-12-20',
'2011-12-21', '2011-12-22', '2011-12-23', '2011-12-26',
'2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30'],
dtype='datetime64[ns]', freq='B')
In [86]: pd.bdate_range(start=start, periods=20)
Out[86]:
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
'2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
'2011-01-13', '2011-01-14', '2011-01-17', '2011-01-18',
'2011-01-19', '2011-01-20', '2011-01-21', '2011-01-24',
'2011-01-25', '2011-01-26', '2011-01-27', '2011-01-28'],
dtype='datetime64[ns]', freq='B')
指定 start
、end
和 periods
将生成一系列从 start
到 end
的均匀间隔日期,结果为 DatetimeIndex
中的 periods
个元素:
In [87]: pd.date_range("2018-01-01", "2018-01-05", periods=5)
Out[87]:
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
'2018-01-05'],
dtype='datetime64[ns]', freq=None)
In [88]: pd.date_range("2018-01-01", "2018-01-05", periods=10)
Out[88]:
DatetimeIndex(['2018-01-01 00:00:00', '2018-01-01 10:40:00',
'2018-01-01 21:20:00', '2018-01-02 08:00:00',
'2018-01-02 18:40:00', '2018-01-03 05:20:00',
'2018-01-03 16:00:00', '2018-01-04 02:40:00',
'2018-01-04 13:20:00', '2018-01-05 00:00:00'],
dtype='datetime64[ns]', freq=None)
自定义频率范围
bdate_range
还可以通过使用 weekmask
和 holidays
参数生成一系列自定义频率日期。只有在传递自定义频率字符串时才会使用这些参数。
In [89]: weekmask = "Mon Wed Fri"
In [90]: holidays = [datetime.datetime(2011, 1, 5), datetime.datetime(2011, 3, 14)]
In [91]: pd.bdate_range(start, end, freq="C", weekmask=weekmask, holidays=holidays)
Out[91]:
DatetimeIndex(['2011-01-03', '2011-01-07', '2011-01-10', '2011-01-12',
'2011-01-14', '2011-01-17', '2011-01-19', '2011-01-21',
'2011-01-24', '2011-01-26',
...
'2011-12-09', '2011-12-12', '2011-12-14', '2011-12-16',
'2011-12-19', '2011-12-21', '2011-12-23', '2011-12-26',
'2011-12-28', '2011-12-30'],
dtype='datetime64[ns]', length=154, freq='C')
In [92]: pd.bdate_range(start, end, freq="CBMS", weekmask=weekmask)
Out[92]:
DatetimeIndex(['2011-01-03', '2011-02-02', '2011-03-02', '2011-04-01',
'2011-05-02', '2011-06-01', '2011-07-01', '2011-08-01',
'2011-09-02', '2011-10-03', '2011-11-02', '2011-12-02'],
dtype='datetime64[ns]', freq='CBMS')
另请参阅
自定义工作日 ### 自定义频率范围
bdate_range
还可以通过使用 weekmask
和 holidays
参数生成一系列自定义频率日期。只有在传递自定义频率字符串时才会使用这些参数。
In [89]: weekmask = "Mon Wed Fri"
In [90]: holidays = [datetime.datetime(2011, 1, 5), datetime.datetime(2011, 3, 14)]
In [91]: pd.bdate_range(start, end, freq="C", weekmask=weekmask, holidays=holidays)
Out[91]:
DatetimeIndex(['2011-01-03', '2011-01-07', '2011-01-10', '2011-01-12',
'2011-01-14', '2011-01-17', '2011-01-19', '2011-01-21',
'2011-01-24', '2011-01-26',
...
'2011-12-09', '2011-12-12', '2011-12-14', '2011-12-16',
'2011-12-19', '2011-12-21', '2011-12-23', '2011-12-26',
'2011-12-28', '2011-12-30'],
dtype='datetime64[ns]', length=154, freq='C')
In [92]: pd.bdate_range(start, end, freq="CBMS", weekmask=weekmask)
Out[92]:
DatetimeIndex(['2011-01-03', '2011-02-02', '2011-03-02', '2011-04-01',
'2011-05-02', '2011-06-01', '2011-07-01', '2011-08-01',
'2011-09-02', '2011-10-03', '2011-11-02', '2011-12-02'],
dtype='datetime64[ns]', freq='CBMS')
另请参阅
自定义工作日
时间戳限制
时间戳表示的限制取决于所选择的分辨率。对于纳秒分辨率,使用 64 位整数表示的时间跨度限制在大约 584 年:
代码语言:javascript复制In [93]: pd.Timestamp.min
Out[93]: Timestamp('1677-09-21 00:12:43.145224193')
In [94]: pd.Timestamp.max
Out[94]: Timestamp('2262-04-11 23:47:16.854775807')
选择秒分辨率时,可用范围增长到 /- 2.9e11 年
。不同分辨率���以通过 as_unit
相互转换。
另请参阅
表示超出范围的跨度
索引
DatetimeIndex
的主要用途之一是作为 pandas 对象的索引。DatetimeIndex
类包含许多与时间序列相关的优化:
- 大量各种偏移量的日期范围在内部预先计算并缓存,以便快速生成后续日期范围(只需抓取一个片段)。
- 在 pandas 对象上使用
shift
方法进行快速移位。 - 具有相同频率的重叠
DatetimeIndex
对象的并集非常快速(对于快速数据对齐很重要)。 - 通过属性(如
year
、month
等)快速访问日期字段。 -
snap
等正规化函数和非常快速的asof
逻辑。
DatetimeIndex
对象具有常规 Index
对象的所有基本功能,以及一系列用于简化频率处理的高级时间序列特定方法。
另请参阅
重新索引方法
注意
虽然 pandas 不强制要求您具有排序的日期索引,但如果日期未排序,则其中一些方法可能会出现意外或不正确的行为。
DatetimeIndex
可以像常规索引一样使用,并提供所有智能功能,如选择、切片等。
In [95]: rng = pd.date_range(start, end, freq="BME")
In [96]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [97]: ts.index
Out[97]:
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',
'2011-05-31', '2011-06-30', '2011-07-29', '2011-08-31',
'2011-09-30', '2011-10-31', '2011-11-30', '2011-12-30'],
dtype='datetime64[ns]', freq='BME')
In [98]: ts[:5].index
Out[98]:
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',
'2011-05-31'],
dtype='datetime64[ns]', freq='BME')
In [99]: ts[::2].index
Out[99]:
DatetimeIndex(['2011-01-31', '2011-03-31', '2011-05-31', '2011-07-29',
'2011-09-30', '2011-11-30'],
dtype='datetime64[ns]', freq='2BME')