比较类似数组的对象
当将 pandas 数据结构与标量值进行比较时,您可以方便地执行逐元素比较:
代码语言:javascript复制In [65]: pd.Series(["foo", "bar", "baz"]) == "foo"
Out[65]:
0 True
1 False
2 False
dtype: bool
In [66]: pd.Index(["foo", "bar", "baz"]) == "foo"
Out[66]: array([ True, False, False])
pandas 还处理了长度相同的不同类似数组对象之间的逐元素比较:
代码语言:javascript复制In [67]: pd.Series(["foo", "bar", "baz"]) == pd.Index(["foo", "bar", "qux"])
Out[67]:
0 True
1 True
2 False
dtype: bool
In [68]: pd.Series(["foo", "bar", "baz"]) == np.array(["foo", "bar", "qux"])
Out[68]:
0 True
1 True
2 False
dtype: bool
尝试比较不同长度的 Index
或 Series
对象将引发 ValueError:
In [69]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[69], line 1
----> 1 pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in _unpack_zerodim_and_defer.<locals>.new_method(self, other)
72 return NotImplemented
74 other = item_from_zerodim(other)
---> 76 return method(self, other)
File ~/work/pandas/pandas/pandas/core/arraylike.py:40, in OpsMixin.__eq__(self, other)
38 @unpack_zerodim_and_defer("__eq__")
39 def __eq__(self, other):
---> 40 return self._cmp_method(other, operator.eq)
File ~/work/pandas/pandas/pandas/core/series.py:6114, in Series._cmp_method(self, other, op)
6111 res_name = ops.get_op_result_name(self, other)
6113 if isinstance(other, Series) and not self._indexed_same(other):
-> 6114 raise ValueError("Can only compare identically-labeled Series objects")
6116 lvalues = self._values
6117 rvalues = extract_array(other, extract_numpy=True, extract_range=True)
ValueError: Can only compare identically-labeled Series objects
In [70]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[70], line 1
----> 1 pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in _unpack_zerodim_and_defer.<locals>.new_method(self, other)
72 return NotImplemented
74 other = item_from_zerodim(other)
---> 76 return method(self, other)
File ~/work/pandas/pandas/pandas/core/arraylike.py:40, in OpsMixin.__eq__(self, other)
38 @unpack_zerodim_and_defer("__eq__")
39 def __eq__(self, other):
---> 40 return self._cmp_method(other, operator.eq)
File ~/work/pandas/pandas/pandas/core/series.py:6114, in Series._cmp_method(self, other, op)
6111 res_name = ops.get_op_result_name(self, other)
6113 if isinstance(other, Series) and not self._indexed_same(other):
-> 6114 raise ValueError("Can only compare identically-labeled Series objects")
6116 lvalues = self._values
6117 rvalues = extract_array(other, extract_numpy=True, extract_range=True)
ValueError: Can only compare identically-labeled Series objects
合并重叠的数据集
一个偶尔出现的问题是合并两个相似的数据集,其中一个数据集中的值优先于另一个。一个例子是代表特定经济指标的两个数据系列,其中一个被认为是“更高质量”的。然而,较低质量的系列可能在历史上延伸得更长,或者数据覆盖更完整。因此,我们希望将两个 DataFrame 对象合并,其中一个 DataFrame 中的缺失值有条件地用另一个 DataFrame 中的相同标签值填充。实现此操作的函数是combine_first()
,我们进行如下说明:
In [71]: df1 = pd.DataFrame(
....: {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]}
....: )
....:
In [72]: df2 = pd.DataFrame(
....: {
....: "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0],
....: "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0],
....: }
....: )
....:
In [73]: df1
Out[73]:
A B
0 1.0 NaN
1 NaN 2.0
2 3.0 3.0
3 5.0 NaN
4 NaN 6.0
In [74]: df2
Out[74]:
A B
0 5.0 NaN
1 2.0 NaN
2 4.0 3.0
3 NaN 4.0
4 3.0 6.0
5 7.0 8.0
In [75]: df1.combine_first(df2)
Out[75]:
A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0
通用 DataFrame 合并
上述 combine_first()
方法调用更一般的 DataFrame.combine()
。此方法接受另一个 DataFrame 和一个组合函数,对齐输入 DataFrame,然后传递组合函数的 Series 对(即,列名相同的列)。
因此,例如,要重现上述 combine_first()
:
In [76]: def combiner(x, y):
....: return np.where(pd.isna(x), y, x)
....:
In [77]: df1.combine(df2, combiner)
Out[77]:
A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0
匹配 / 广播行为
DataFrame 有方法 add()
、sub()
、mul()
、div()
和相关函数 radd()
、rsub()
,… 用于执行二进制操作。对广播行为,Series 输入是主要关注的。使用这些函数,您可以通过 axis 关键字匹配 index 或 columns:
In [18]: df = pd.DataFrame(
....: {
....: "one": pd.Series(np.random.randn(3), index=["a", "b", "c"]),
....: "two": pd.Series(np.random.randn(4), index=["a", "b", "c", "d"]),
....: "three": pd.Series(np.random.randn(3), index=["b", "c", "d"]),
....: }
....: )
....:
In [19]: df
Out[19]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [20]: row = df.iloc[1]
In [21]: column = df["two"]
In [22]: df.sub(row, axis="columns")
Out[22]:
one two three
a 1.051928 -0.139606 NaN
b 0.000000 0.000000 0.000000
c 0.352192 -0.433754 1.277825
d NaN -1.632779 -0.562782
In [23]: df.sub(row, axis=1)
Out[23]:
one two three
a 1.051928 -0.139606 NaN
b 0.000000 0.000000 0.000000
c 0.352192 -0.433754 1.277825
d NaN -1.632779 -0.562782
In [24]: df.sub(column, axis="index")
Out[24]:
one two three
a -0.377535 0.0 NaN
b -1.569069 0.0 -1.962513
c -0.783123 0.0 -0.250933
d NaN 0.0 -0.892516
In [25]: df.sub(column, axis=0)
Out[25]:
one two three
a -0.377535 0.0 NaN
b -1.569069 0.0 -1.962513
c -0.783123 0.0 -0.250933
d NaN 0.0 -0.892516
此外,您可以将 MultiIndexed DataFrame 的一个级别与 Series 对齐。
代码语言:javascript复制In [26]: dfmi = df.copy()
In [27]: dfmi.index = pd.MultiIndex.from_tuples(
....: [(1, "a"), (1, "b"), (1, "c"), (2, "a")], names=["first", "second"]
....: )
....:
In [28]: dfmi.sub(column, axis=0, level="second")
Out[28]:
one two three
first second
1 a -0.377535 0.000000 NaN
b -1.569069 0.000000 -1.962513
c -0.783123 0.000000 -0.250933
2 a NaN -1.493173 -2.385688
Series 和 Index 也支持内置的 divmod()
。此函数同时进行地板除法和模运算,返回与左侧相同类型的两个元组。例如:
In [29]: s = pd.Series(np.arange(10))
In [30]: s
Out[30]:
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
dtype: int64
In [31]: div, rem = divmod(s, 3)
In [32]: div
Out[32]:
0 0
1 0
2 0
3 1
4 1
5 1
6 2
7 2
8 2
9 3
dtype: int64
In [33]: rem
Out[33]:
0 0
1 1
2 2
3 0
4 1
5 2
6 0
7 1
8 2
9 0
dtype: int64
In [34]: idx = pd.Index(np.arange(10))
In [35]: idx
Out[35]: Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')
In [36]: div, rem = divmod(idx, 3)
In [37]: div
Out[37]: Index([0, 0, 0, 1, 1, 1, 2, 2, 2, 3], dtype='int64')
In [38]: rem
Out[38]: Index([0, 1, 2, 0, 1, 2, 0, 1, 2, 0], dtype='int64')
我们还可以进行逐元素的 divmod()
:
In [39]: div, rem = divmod(s, [2, 2, 3, 3, 4, 4, 5, 5, 6, 6])
In [40]: div
Out[40]:
0 0
1 0
2 0
3 1
4 1
5 1
6 1
7 1
8 1
9 1
dtype: int64
In [41]: rem
Out[41]:
0 0
1 1
2 2
3 0
4 0
5 1
6 1
7 2
8 2
9 3
dtype: int64
缺失数据 / 使用填充值的操作
在 Series 和 DataFrame 中,算术函数有一个 fill_value 选项,即在一个位置的值中至多有一个缺失时要替换的值。例如,当添加两个 DataFrame 对象时,你可能希望将 NaN 视为 0,除非两个 DataFrame 都缺少该值,此时结果将是 NaN(如果你愿意,你可以稍后使用 fillna
将 NaN 替换为其他值)。
In [42]: df2 = df.copy()
In [43]: df2.loc["a", "three"] = 1.0
In [44]: df
Out[44]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [45]: df2
Out[45]:
one two three
a 1.394981 1.772517 1.000000
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [46]: df df2
Out[46]:
one two three
a 2.789963 3.545034 NaN
b 0.686107 3.824246 -0.100780
c 1.390491 2.956737 2.454870
d NaN 0.558688 -1.226343
In [47]: df.add(df2, fill_value=0)
Out[47]:
one two three
a 2.789963 3.545034 1.000000
b 0.686107 3.824246 -0.100780
c 1.390491 2.956737 2.454870
d NaN 0.558688 -1.226343
灵活的比较
Series 和 DataFrame 有二进制比较方法 eq
、ne
、lt
、gt
、le
和 ge
,其行为类似于上面描述的二进制算术操作:
In [48]: df.gt(df2)
Out[48]:
one two three
a False False False
b False False False
c False False False
d False False False
In [49]: df2.ne(df)
Out[49]:
one two three
a False False True
b False False False
c False False False
d True False False
这些操作会产生与左侧输入相同类型的 dtype 为 bool
的 pandas 对象。这些 boolean
对象可以在索引操作中使用,请参阅布尔索引一节。
布尔归约
你可以应用归约:empty
、any()
、all()
和 bool()
来提供一种总结布尔结果的方法。
In [50]: (df > 0).all()
Out[50]:
one False
two True
three False
dtype: bool
In [51]: (df > 0).any()
Out[51]:
one True
two True
three True
dtype: bool
你可以归约到最终的布尔值。
代码语言:javascript复制In [52]: (df > 0).any().any()
Out[52]: True
你可以通过 empty
属性测试 pandas 对象是否为空。
In [53]: df.empty
Out[53]: False
In [54]: pd.DataFrame(columns=list("ABC")).empty
Out[54]: True
警告
断言 pandas 对象的真实性会引发错误,因为空值或值的测试是模糊的。
代码语言:javascript复制In [55]: if df:
....: print(True)
....:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-55-318d08b2571a> in ?()
----> 1 if df:
2 print(True)
~/work/pandas/pandas/pandas/core/generic.py in ?(self)
1575 @final
1576 def __nonzero__(self) -> NoReturn:
-> 1577 raise ValueError(
1578 f"The truth value of a {type(self).__name__} is ambiguous. "
1579 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
1580 )
ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
代码语言:javascript复制In [56]: df and df2
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-56-b241b64bb471> in ?()
----> 1 df and df2
~/work/pandas/pandas/pandas/core/generic.py in ?(self)
1575 @final
1576 def __nonzero__(self) -> NoReturn:
-> 1577 raise ValueError(
1578 f"The truth value of a {type(self).__name__} is ambiguous. "
1579 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
1580 )
ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
详细讨论请参阅陷阱。
比较对象是否等价
常常你会发现有多种方法可以计算相同的结果。举个简单的例子,考虑df df
和df * 2
。为了测试这两个计算是否产生相同的结果,根据上面展示的工具,你可能会想象使用(df df == df * 2).all()
。但实际上,这个表达式是错误的:
In [57]: df df == df * 2
Out[57]:
one two three
a True True False
b True True True
c True True True
d False True True
In [58]: (df df == df * 2).all()
Out[58]:
one False
two True
three False
dtype: bool
注意,布尔 DataFrame df df == df * 2
包含一些 False 值!这是因为 NaN 不会比较相等:
In [59]: np.nan == np.nan
Out[59]: False
因此,NDFrames(如 Series 和 DataFrames)具有一个 equals()
方法,用于测试相等性,其中相应位置的 NaN 被视为相等。
In [60]: (df df).equals(df * 2)
Out[60]: True
请注意,要使相等为真,Series 或 DataFrame 索引需要按相同顺序排列:
代码语言:javascript复制In [61]: df1 = pd.DataFrame({"col": ["foo", 0, np.nan]})
In [62]: df2 = pd.DataFrame({"col": [np.nan, 0, "foo"]}, index=[2, 1, 0])
In [63]: df1.equals(df2)
Out[63]: False
In [64]: df1.equals(df2.sort_index())
Out[64]: True
比较类数组对象
当比较一个 pandas 数据结构与一个标量值时,你可以方便地执行逐元素比较:
代码语言:javascript复制In [65]: pd.Series(["foo", "bar", "baz"]) == "foo"
Out[65]:
0 True
1 False
2 False
dtype: bool
In [66]: pd.Index(["foo", "bar", "baz"]) == "foo"
Out[66]: array([ True, False, False])
pandas 还处理同长度的不同类数组对象之间的逐元素比较:
代码语言:javascript复制In [67]: pd.Series(["foo", "bar", "baz"]) == pd.Index(["foo", "bar", "qux"])
Out[67]:
0 True
1 True
2 False
dtype: bool
In [68]: pd.Series(["foo", "bar", "baz"]) == np.array(["foo", "bar", "qux"])
Out[68]:
0 True
1 True
2 False
dtype: bool
尝试比较不同长度的 Index
或 Series
对象会引发 ValueError:
In [69]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[69], line 1
----> 1 pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in _unpack_zerodim_and_defer.<locals>.new_method(self, other)
72 return NotImplemented
74 other = item_from_zerodim(other)
---> 76 return method(self, other)
File ~/work/pandas/pandas/pandas/core/arraylike.py:40, in OpsMixin.__eq__(self, other)
38 @unpack_zerodim_and_defer("__eq__")
39 def __eq__(self, other):
---> 40 return self._cmp_method(other, operator.eq)
File ~/work/pandas/pandas/pandas/core/series.py:6114, in Series._cmp_method(self, other, op)
6111 res_name = ops.get_op_result_name(self, other)
6113 if isinstance(other, Series) and not self._indexed_same(other):
-> 6114 raise ValueError("Can only compare identically-labeled Series objects")
6116 lvalues = self._values
6117 rvalues = extract_array(other, extract_numpy=True, extract_range=True)
ValueError: Can only compare identically-labeled Series objects
In [70]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[70], line 1
----> 1 pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in _unpack_zerodim_and_defer.<locals>.new_method(self, other)
72 return NotImplemented
74 other = item_from_zerodim(other)
---> 76 return method(self, other)
File ~/work/pandas/pandas/pandas/core/arraylike.py:40, in OpsMixin.__eq__(self, other)
38 @unpack_zerodim_and_defer("__eq__")
39 def __eq__(self, other):
---> 40 return self._cmp_method(other, operator.eq)
File ~/work/pandas/pandas/pandas/core/series.py:6114, in Series._cmp_method(self, other, op)
6111 res_name = ops.get_op_result_name(self, other)
6113 if isinstance(other, Series) and not self._indexed_same(other):
-> 6114 raise ValueError("Can only compare identically-labeled Series objects")
6116 lvalues = self._values
6117 rvalues = extract_array(other, extract_numpy=True, extract_range=True)
ValueError: Can only compare identically-labeled Series objects
合并重叠数据集
有时会出现一个问题,即合并两个相似的数据集,其中一个数据集中的值优先于另一个。一个例子是代表特定经济指标的两个数据系列,其中一个被认为是“更高质量”的。然而,较低质量的系列可能在历史上延伸得更远,或者具有更完整的数据覆盖。因此,我们希望将两个 DataFrame 对象合并,其中一个 DataFrame 中的缺失值有条件地用另一个 DataFrame 中的类似标记值填充。实现此操作的函数是combine_first()
,我们进行演示:
In [71]: df1 = pd.DataFrame(
....: {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]}
....: )
....:
In [72]: df2 = pd.DataFrame(
....: {
....: "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0],
....: "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0],
....: }
....: )
....:
In [73]: df1
Out[73]:
A B
0 1.0 NaN
1 NaN 2.0
2 3.0 3.0
3 5.0 NaN
4 NaN 6.0
In [74]: df2
Out[74]:
A B
0 5.0 NaN
1 2.0 NaN
2 4.0 3.0
3 NaN 4.0
4 3.0 6.0
5 7.0 8.0
In [75]: df1.combine_first(df2)
Out[75]:
A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0
通用 DataFrame 合并
上面的combine_first()
方法调用了更一般的DataFrame.combine()
。此方法接受另一个 DataFrame 和一个合并函数,对齐输入 DataFrame,然后将组合器函数传递给一对 Series(即,列名称相同的列)。
因此,例如,要重现combine_first()
如上所示:
In [76]: def combiner(x, y):
....: return np.where(pd.isna(x), y, x)
....:
In [77]: df1.combine(df2, combiner)
Out[77]:
A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0
描述性统计
存在大量计算描述性统计和其他相关操作的方法,适用于 Series,DataFrame。其中大多数是聚合(因此生成较低维度的结果),如sum()
、mean()
和quantile()
,但其中一些,如cumsum()
和cumprod()
,生成相同大小的对象。一般来说,这些方法接受一个axis参数,就像*ndarray.{sum, std, …}*一样,但是轴可以通过名称或整数指定:
- Series:不需要轴参数
- DataFrame:“索引”(axis=0,默认),“列”(axis=1)
例如:
代码语言:javascript复制In [78]: df
Out[78]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [79]: df.mean(0)
Out[79]:
one 0.811094
two 1.360588
three 0.187958
dtype: float64
In [80]: df.mean(1)
Out[80]:
a 1.583749
b 0.734929
c 1.133683
d -0.166914
dtype: float64
所有这些方法都有一个skipna
选项,指示是否排除缺失数据(默认为True
):
In [81]: df.sum(0, skipna=False)
Out[81]:
one NaN
two 5.442353
three NaN
dtype: float64
In [82]: df.sum(axis=1, skipna=True)
Out[82]:
a 3.167498
b 2.204786
c 3.401050
d -0.333828
dtype: float64
结合广播/算术行为,可以非常简洁地描述各种统计程序,比如标准化(使数据均值为零,标准差为 1):
代码语言:javascript复制In [83]: ts_stand = (df - df.mean()) / df.std()
In [84]: ts_stand.std()
Out[84]:
one 1.0
two 1.0
three 1.0
dtype: float64
In [85]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)
In [86]: xs_stand.std(1)
Out[86]:
a 1.0
b 1.0
c 1.0
d 1.0
dtype: float64
注意,像 cumsum()
和 cumprod()
这样的方法会保留 NaN
值的位置。这与 expanding()
和 rolling()
有些不同,因为 NaN
的行为还受 min_periods
参数的影响。
In [87]: df.cumsum()
Out[87]:
one two three
a 1.394981 1.772517 NaN
b 1.738035 3.684640 -0.050390
c 2.433281 5.163008 1.177045
d NaN 5.442353 0.563873
这是常见函数的快速参考摘要表。每个函数还接受一个可选的 level
参数,该参数仅在对象具有分层索引时适用。
函数 | 描述 |
---|---|
count | 非 NA 观测数量 |
sum | 值的总和 |
mean | 值的均值 |
median | 值的算术中位数 |
min | 最小值 |
max | 最大值 |
mode | 众数 |
abs | 绝对值 |
prod | 值的乘积 |
std | Bessel 校正的样本标准差 |
var | 无偏方差 |
sem | 均值的标准误差 |
skew | 样本偏度(3 阶矩) |
kurt | 样本峰度(4 阶矩) |
quantile | 样本分位数(%处的值) |
cumsum | 累积和 |
cumprod | 累积乘积 |
cummax | 累积最大值 |
cummin | 累积最小值 |
注意,一些 NumPy 方法,如 mean
、std
和 sum
,默认情况下会在 Series 输入中排除 NA 值:
In [88]: np.mean(df["one"])
Out[88]: 0.8110935116651192
In [89]: np.mean(df["one"].to_numpy())
Out[89]: nan
Series.nunique()
将返回 Series 中唯一非 NA 值的数量:
In [90]: series = pd.Series(np.random.randn(500))
In [91]: series[20:500] = np.nan
In [92]: series[10:20] = 5
In [93]: series.nunique()
Out[93]: 11
数据汇总:describe
有一个方便的 describe()
函数,可以计算关于 Series 或 DataFrame 列的各种摘要统计信息(当然不包括 NA 值):
In [94]: series = pd.Series(np.random.randn(1000))
In [95]: series[::2] = np.nan
In [96]: series.describe()
Out[96]:
count 500.000000
mean -0.021292
std 1.015906
min -2.683763
25% -0.699070
50% -0.069718
75% 0.714483
max 3.160915
dtype: float64
In [97]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=["a", "b", "c", "d", "e"])
In [98]: frame.iloc[::2] = np.nan
In [99]: frame.describe()
Out[99]:
a b c d e
count 500.000000 500.000000 500.000000 500.000000 500.000000
mean 0.033387 0.030045 -0.043719 -0.051686 0.005979
std 1.017152 0.978743 1.025270 1.015988 1.006695
min -3.000951 -2.637901 -3.303099 -3.159200 -3.188821
25% -0.647623 -0.576449 -0.712369 -0.691338 -0.691115
50% 0.047578 -0.021499 -0.023888 -0.032652 -0.025363
75% 0.729907 0.775880 0.618896 0.670047 0.649748
max 2.740139 2.752332 3.004229 2.728702 3.240991
您可以选���在输出中包含特定的百分位数:
代码语言:javascript复制In [100]: series.describe(percentiles=[0.05, 0.25, 0.75, 0.95])
Out[100]:
count 500.000000
mean -0.021292
std 1.015906
min -2.683763
5% -1.645423
25% -0.699070
50% -0.069718
75% 0.714483
95% 1.711409
max 3.160915
dtype: float64
默认情况下,中位数始终包括在内。
对于非数值 Series 对象,describe()
将提供关于唯一值数量和最常出现值的简单摘要:
In [101]: s = pd.Series(["a", "a", "b", "b", "a", "a", np.nan, "c", "d", "a"])
In [102]: s.describe()
Out[102]:
count 9
unique 4
top a
freq 5
dtype: object
注意,在混合类型的 DataFrame 对象上,describe()
将限制摘要仅包括数值列或者如果没有数值列,则仅包括分类列:
In [103]: frame = pd.DataFrame({"a": ["Yes", "Yes", "No", "No"], "b": range(4)})
In [104]: frame.describe()
Out[104]:
b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000
可以通过提供一个类型列表作为 include
/exclude
参数来控制此行为。还可以使用特殊值 all
:
In [105]: frame.describe(include=["object"])
Out[105]:
a
count 4
unique 2
top Yes
freq 2
In [106]: frame.describe(include=["number"])
Out[106]:
b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000
In [107]: frame.describe(include="all")
Out[107]:
a b
count 4 4.000000
unique 2 NaN
top Yes NaN
freq 2 NaN
mean NaN 1.500000
std NaN 1.290994
min NaN 0.000000
25% NaN 0.750000
50% NaN 1.500000
75% NaN 2.250000
max NaN 3.000000
该功能依赖于 select_dtypes。有关接受的输入的详细信息,请参考那里。### 最小/最大值的索引
Series 和 DataFrame 上的idxmin()
和idxmax()
函数计算具有最小和最大对应值的索引标签:
In [108]: s1 = pd.Series(np.random.randn(5))
In [109]: s1
Out[109]:
0 1.118076
1 -0.352051
2 -1.242883
3 -1.277155
4 -0.641184
dtype: float64
In [110]: s1.idxmin(), s1.idxmax()
Out[110]: (3, 0)
In [111]: df1 = pd.DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"])
In [112]: df1
Out[112]:
A B C
0 -0.327863 -0.946180 -0.137570
1 -0.186235 -0.257213 -0.486567
2 -0.507027 -0.871259 -0.111110
3 2.000339 -2.430505 0.089759
4 -0.321434 -0.033695 0.096271
In [113]: df1.idxmin(axis=0)
Out[113]:
A 2
B 3
C 1
dtype: int64
In [114]: df1.idxmax(axis=1)
Out[114]:
0 C
1 A
2 C
3 A
4 C
dtype: object
当有多行(或列)匹配最小值或最大值时,idxmin()
和idxmax()
返回第一个匹配的索引:
In [115]: df3 = pd.DataFrame([2, 1, 1, 3, np.nan], columns=["A"], index=list("edcba"))
In [116]: df3
Out[116]:
A
e 2.0
d 1.0
c 1.0
b 3.0
a NaN
In [117]: df3["A"].idxmin()
Out[117]: 'd'
注意
idxmin
和 idxmax
在 NumPy 中被称为 argmin
和 argmax
。### 值计数(直方图)/ 众数
value_counts()
Series 方法计算值的 1D 数组的直方图。它也可以用作常规数组的函数:
In [118]: data = np.random.randint(0, 7, size=50)
In [119]: data
Out[119]:
array([6, 6, 2, 3, 5, 3, 2, 5, 4, 5, 4, 3, 4, 5, 0, 2, 0, 4, 2, 0, 3, 2,
2, 5, 6, 5, 3, 4, 6, 4, 3, 5, 6, 4, 3, 6, 2, 6, 6, 2, 3, 4, 2, 1,
6, 2, 6, 1, 5, 4])
In [120]: s = pd.Series(data)
In [121]: s.value_counts()
Out[121]:
6 10
2 10
4 9
3 8
5 8
0 3
1 2
Name: count, dtype: int64
value_counts()
方法可用于计算跨多列的组合。默认情况下使用所有列,但可以使用 subset
参数选择子集。
In [122]: data = {"a": [1, 2, 3, 4], "b": ["x", "x", "y", "y"]}
In [123]: frame = pd.DataFrame(data)
In [124]: frame.value_counts()
Out[124]:
a b
1 x 1
2 x 1
3 y 1
4 y 1
Name: count, dtype: int64
类似地,您可以获取 Series 或 DataFrame 中值的出现频率最高的值,即众数:
代码语言:javascript复制In [125]: s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])
In [126]: s5.mode()
Out[126]:
0 3
1 7
dtype: int64
In [127]: df5 = pd.DataFrame(
.....: {
.....: "A": np.random.randint(0, 7, size=50),
.....: "B": np.random.randint(-10, 15, size=50),
.....: }
.....: )
.....:
In [128]: df5.mode()
Out[128]:
A B
0 1.0 -9
1 NaN 10
2 NaN 13
离散化和分位数
连续值可以使用cut()
(基于值的箱)和qcut()
(基于样本分位数的箱)函数进行离散化:
In [129]: arr = np.random.randn(20)
In [130]: factor = pd.cut(arr, 4)
In [131]: factor
Out[131]:
[(-0.251, 0.464], (-0.968, -0.251], (0.464, 1.179], (-0.251, 0.464], (-0.968, -0.251], ..., (-0.251, 0.464], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251]]
Length: 20
Categories (4, interval[float64, right]): [(-0.968, -0.251] < (-0.251, 0.464] < (0.464, 1.179] <
(1.179, 1.893]]
In [132]: factor = pd.cut(arr, [-5, -1, 0, 1, 5])
In [133]: factor
Out[133]:
[(0, 1], (-1, 0], (0, 1], (0, 1], (-1, 0], ..., (-1, 0], (-1, 0], (-1, 0], (-1, 0], (-1, 0]]
Length: 20
Categories (4, interval[int64, right]): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]
qcut()
计算样本分位数。例如,我们可以将一些正态分布数据切片成相等大小的四分位数:
In [134]: arr = np.random.randn(30)
In [135]: factor = pd.qcut(arr, [0, 0.25, 0.5, 0.75, 1])
In [136]: factor
Out[136]:
[(0.569, 1.184], (-2.278, -0.301], (-2.278, -0.301], (0.569, 1.184], (0.569, 1.184], ..., (-0.301, 0.569], (1.184, 2.346], (1.184, 2.346], (-0.301, 0.569], (-2.278, -0.301]]
Length: 30
Categories (4, interval[float64, right]): [(-2.278, -0.301] < (-0.301, 0.569] < (0.569, 1.184] <
(1.184, 2.346]]
我们也可以传入无限值来定义箱子:
代码语言:javascript复制In [137]: arr = np.random.randn(20)
In [138]: factor = pd.cut(arr, [-np.inf, 0, np.inf])
In [139]: factor
Out[139]:
[(-inf, 0.0], (0.0, inf], (0.0, inf], (-inf, 0.0], (-inf, 0.0], ..., (-inf, 0.0], (-inf, 0.0], (-inf, 0.0], (0.0, inf], (0.0, inf]]
Length: 20
Categories (2, interval[float64, right]): [(-inf, 0.0] < (0.0, inf]]
数据汇总:描述
有一个方便的describe()
函数,它计算关于 Series 或 DataFrame 的列的各种摘要统计信息(当然不包括 NAs):
In [94]: series = pd.Series(np.random.randn(1000))
In [95]: series[::2] = np.nan
In [96]: series.describe()
Out[96]:
count 500.000000
mean -0.021292
std 1.015906
min -2.683763
25% -0.699070
50% -0.069718
75% 0.714483
max 3.160915
dtype: float64
In [97]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=["a", "b", "c", "d", "e"])
In [98]: frame.iloc[::2] = np.nan
In [99]: frame.describe()
Out[99]:
a b c d e
count 500.000000 500.000000 500.000000 500.000000 500.000000
mean 0.033387 0.030045 -0.043719 -0.051686 0.005979
std 1.017152 0.978743 1.025270 1.015988 1.006695
min -3.000951 -2.637901 -3.303099 -3.159200 -3.188821
25% -0.647623 -0.576449 -0.712369 -0.691338 -0.691115
50% 0.047578 -0.021499 -0.023888 -0.032652 -0.025363
75% 0.729907 0.775880 0.618896 0.670047 0.649748
max 2.740139 2.752332 3.004229 2.728702 3.240991
你可以选择特定的百分位数包含在输出中:
代码语言:javascript复制In [100]: series.describe(percentiles=[0.05, 0.25, 0.75, 0.95])
Out[100]:
count 500.000000
mean -0.021292
std 1.015906
min -2.683763
5% -1.645423
25% -0.699070
50% -0.069718
75% 0.714483
95% 1.711409
max 3.160915
dtype: float64
默认情况下,中位数始终包含在内。
对于非数值 Series 对象,describe()
将给出关于唯一值数量和最常出现值的简单摘要:
In [101]: s = pd.Series(["a", "a", "b", "b", "a", "a", np.nan, "c", "d", "a"])
In [102]: s.describe()
Out[102]:
count 9
unique 4
top a
freq 5
dtype: object
请注意,在混合类型的 DataFrame 对象上,describe()
将限制摘要仅包括数值列或者如果没有数值列,则仅包括分类列:
In [103]: frame = pd.DataFrame({"a": ["Yes", "Yes", "No", "No"], "b": range(4)})
In [104]: frame.describe()
Out[104]:
b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000
可以通过提供类型列表作为include
/exclude
参数来控制此行为。还可以使用特殊值all
:
In [105]: frame.describe(include=["object"])
Out[105]:
a
count 4
unique 2
top Yes
freq 2
In [106]: frame.describe(include=["number"])
Out[106]:
b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000
In [107]: frame.describe(include="all")
Out[107]:
a b
count 4 4.000000
unique 2 NaN
top Yes NaN
freq 2 NaN
mean NaN 1.500000
std NaN 1.290994
min NaN 0.000000
25% NaN 0.750000
50% NaN 1.500000
75% NaN 2.250000
max NaN 3.000000
该功能依赖于 select_dtypes。有关接受的输入的详细信息,请参阅那里。
最小/最大值的索引
Series 和 DataFrame 上的idxmin()
和idxmax()
函数计算具有最小和最大对应值的索引标签:
In [108]: s1 = pd.Series(np.random.randn(5))
In [109]: s1
Out[109]:
0 1.118076
1 -0.352051
2 -1.242883
3 -1.277155
4 -0.641184
dtype: float64
In [110]: s1.idxmin(), s1.idxmax()
Out[110]: (3, 0)
In [111]: df1 = pd.DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"])
In [112]: df1
Out[112]:
A B C
0 -0.327863 -0.946180 -0.137570
1 -0.186235 -0.257213 -0.486567
2 -0.507027 -0.871259 -0.111110
3 2.000339 -2.430505 0.089759
4 -0.321434 -0.033695 0.096271
In [113]: df1.idxmin(axis=0)
Out[113]:
A 2
B 3
C 1
dtype: int64
In [114]: df1.idxmax(axis=1)
Out[114]:
0 C
1 A
2 C
3 A
4 C
dtype: object
当有多行(或列)匹配最小值或最大值时,idxmin()
和idxmax()
返回第一个匹配的索引:
In [115]: df3 = pd.DataFrame([2, 1, 1, 3, np.nan], columns=["A"], index=list("edcba"))
In [116]: df3
Out[116]:
A
e 2.0
d 1.0
c 1.0
b 3.0
a NaN
In [117]: df3["A"].idxmin()
Out[117]: 'd'
注意
在 NumPy 中,idxmin
和idxmax
被称为argmin
和argmax
。
值计数(直方图)/ 众数
value_counts()
Series 方法计算值数组的直方图。它也可以用作常规数组的函数:
In [118]: data = np.random.randint(0, 7, size=50)
In [119]: data
Out[119]:
array([6, 6, 2, 3, 5, 3, 2, 5, 4, 5, 4, 3, 4, 5, 0, 2, 0, 4, 2, 0, 3, 2,
2, 5, 6, 5, 3, 4, 6, 4, 3, 5, 6, 4, 3, 6, 2, 6, 6, 2, 3, 4, 2, 1,
6, 2, 6, 1, 5, 4])
In [120]: s = pd.Series(data)
In [121]: s.value_counts()
Out[121]:
6 10
2 10
4 9
3 8
5 8
0 3
1 2
Name: count, dtype: int64
value_counts()
方法可用于计算多列之间的组合。默认情况下会使用所有列,但可以使用subset
参数选择子集。
In [122]: data = {"a": [1, 2, 3, 4], "b": ["x", "x", "y", "y"]}
In [123]: frame = pd.DataFrame(data)
In [124]: frame.value_counts()
Out[124]:
a b
1 x 1
2 x 1
3 y 1
4 y 1
Name: count, dtype: int64
同样,您可以获取 Series 或 DataFrame 中值的出现频率最高的值(即众数):
代码语言:javascript复制In [125]: s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])
In [126]: s5.mode()
Out[126]:
0 3
1 7
dtype: int64
In [127]: df5 = pd.DataFrame(
.....: {
.....: "A": np.random.randint(0, 7, size=50),
.....: "B": np.random.randint(-10, 15, size=50),
.....: }
.....: )
.....:
In [128]: df5.mode()
Out[128]:
A B
0 1.0 -9
1 NaN 10
2 NaN 13
离散化和分位数
连续值可以使用cut()
(基于值的区间)和qcut()
(基于样本分位数的区间)函数进行离散化:
In [129]: arr = np.random.randn(20)
In [130]: factor = pd.cut(arr, 4)
In [131]: factor
Out[131]:
[(-0.251, 0.464], (-0.968, -0.251], (0.464, 1.179], (-0.251, 0.464], (-0.968, -0.251], ..., (-0.251, 0.464], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251]]
Length: 20
Categories (4, interval[float64, right]): [(-0.968, -0.251] < (-0.251, 0.464] < (0.464, 1.179] <
(1.179, 1.893]]
In [132]: factor = pd.cut(arr, [-5, -1, 0, 1, 5])
In [133]: factor
Out[133]:
[(0, 1], (-1, 0], (0, 1], (0, 1], (-1, 0], ..., (-1, 0], (-1, 0], (-1, 0], (-1, 0], (-1, 0]]
Length: 20
Categories (4, interval[int64, right]): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]
qcut()
计算样本分位数。例如,我们可以将一些正态分布数据切分成相等大小的四分位数:
In [134]: arr = np.random.randn(30)
In [135]: factor = pd.qcut(arr, [0, 0.25, 0.5, 0.75, 1])
In [136]: factor
Out[136]:
[(0.569, 1.184], (-2.278, -0.301], (-2.278, -0.301], (0.569, 1.184], (0.569, 1.184], ..., (-0.301, 0.569], (1.184, 2.346], (1.184, 2.346], (-0.301, 0.569], (-2.278, -0.301]]
Length: 30
Categories (4, interval[float64, right]): [(-2.278, -0.301] < (-0.301, 0.569] < (0.569, 1.184] <
(1.184, 2.346]]
我们还可以传入无限值来定义区间:
代码语言:javascript复制In [137]: arr = np.random.randn(20)
In [138]: factor = pd.cut(arr, [-np.inf, 0, np.inf])
In [139]: factor
Out[139]:
[(-inf, 0.0], (0.0, inf], (0.0, inf], (-inf, 0.0], (-inf, 0.0], ..., (-inf, 0.0], (-inf, 0.0], (-inf, 0.0], (0.0, inf], (0.0, inf]]
Length: 20
Categories (2, interval[float64, right]): [(-inf, 0.0] < (0.0, inf]]
函数应用
要将您自己或其他库的函数应用于 pandas 对象,您应该了解下面的三种方法。要使用的适当方法取决于您的函数是否希望在整个DataFrame
或Series
、按行或按列,或按元素进行操作。
- 按表应用函数:
pipe()
- 按行或列应用函数:
apply()
- 聚合 API:
agg()
和transform()
- 应用逐元素函数:
map()
表格级函数应用
DataFrames
和 Series
可以被传递给函数。但是,如果函数需要在链式调用中调用,请考虑使用 pipe()
方法。
首先进行一些设置:
代码语言:javascript复制In [140]: def extract_city_name(df):
.....: """
.....: Chicago, IL -> Chicago for city_name column
.....: """
.....: df["city_name"] = df["city_and_code"].str.split(",").str.get(0)
.....: return df
.....:
In [141]: def add_country_name(df, country_name=None):
.....: """
.....: Chicago -> Chicago-US for city_name column
.....: """
.....: col = "city_name"
.....: df["city_and_country"] = df[col] country_name
.....: return df
.....:
In [142]: df_p = pd.DataFrame({"city_and_code": ["Chicago, IL"]})
extract_city_name
和 add_country_name
是接受并返回 DataFrames
的函数。
现在比较以下内容:
代码语言:javascript复制In [143]: add_country_name(extract_city_name(df_p), country_name="US")
Out[143]:
city_and_code city_name city_and_country
0 Chicago, IL Chicago ChicagoUS
等同于:
代码语言:javascript复制In [144]: df_p.pipe(extract_city_name).pipe(add_country_name, country_name="US")
Out[144]:
city_and_code city_name city_and_country
0 Chicago, IL Chicago ChicagoUS
pandas 鼓励第二种风格,即称为方法链。pipe
可以轻松地在方法链中使用您自己或另一个库的函数,与 pandas 的方法并列使用。
在上面的示例中,函数 extract_city_name
和 add_country_name
分别预期将 DataFrame
作为第一个位置参数。如果您希望应用的函数将其数据作为,例如,第二个参数呢?在这种情况下,提供一个 (callable, data_keyword)
元组给 pipe
。.pipe
将路由 DataFrame
到元组中指定的参数。
例如,我们可以使用 statsmodels 拟合回归。他们的 API 首先期望公式,然后是第二个参数 DataFrame
,即 data
。我们将函数、关键字对 (sm.ols, 'data')
传递给 pipe
:
In [147]: import statsmodels.formula.api as sm
In [148]: bb = pd.read_csv("data/baseball.csv", index_col="id")
In [149]: (
.....: bb.query("h > 0")
.....: .assign(ln_h=lambda df: np.log(df.h))
.....: .pipe((sm.ols, "data"), "hr ~ ln_h year g C(lg)")
.....: .fit()
.....: .summary()
.....: )
.....:
Out[149]:
<class 'statsmodels.iolib.summary.Summary'>
"""
OLS Regression Results
==============================================================================
Dep. Variable: hr R-squared: 0.685
Model: OLS Adj. R-squared: 0.665
Method: Least Squares F-statistic: 34.28
Date: Tue, 22 Nov 2022 Prob (F-statistic): 3.48e-15
Time: 05:34:17 Log-Likelihood: -205.92
No. Observations: 68 AIC: 421.8
Df Residuals: 63 BIC: 432.9
Df Model: 4
Covariance Type: nonrobust
===============================================================================
coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------------
Intercept -8484.7720 4664.146 -1.819 0.074 -1.78e 04 835.780
C(lg)[T.NL] -2.2736 1.325 -1.716 0.091 -4.922 0.375
ln_h -1.3542 0.875 -1.547 0.127 -3.103 0.395
year 4.2277 2.324 1.819 0.074 -0.417 8.872
g 0.1841 0.029 6.258 0.000 0.125 0.243
==============================================================================
Omnibus: 10.875 Durbin-Watson: 1.999
Prob(Omnibus): 0.004 Jarque-Bera (JB): 17.298
Skew: 0.537 Prob(JB): 0.000175
Kurtosis: 5.225 Cond. No. 1.49e 07
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.49e 07. This might indicate that there are
strong multicollinearity or other numerical problems.
"""
pipe
方法受 Unix 管道的启发,最近也受到了 dplyr 和 magrittr 的影响,它们引入了流行的 (%>%)
(读作 pipe)运算符用于 R。这里的 pipe
实现非常简洁,并且在 Python 中感觉很合适。我们鼓励您查看 pipe()
的源代码。
按行或按列应用函数
可以使用 apply()
方法沿着 DataFrame 的轴应用任意函数,与描述性统计方法一样,它接受一个可选的 axis
参数:
In [145]: df.apply(lambda x: np.mean(x))
Out[145]:
one 0.811094
two 1.360588
three 0.187958
dtype: float64
In [146]: df.apply(lambda x: np.mean(x), axis=1)
Out[146]:
a 1.583749
b 0.734929
c 1.133683
d -0.166914
dtype: float64
In [147]: df.apply(lambda x: x.max() - x.min())
Out[147]:
one 1.051928
two 1.632779
three 1.840607
dtype: float64
In [148]: df.apply(np.cumsum)
Out[148]:
one two three
a 1.394981 1.772517 NaN
b 1.738035 3.684640 -0.050390
c 2.433281 5.163008 1.177045
d NaN 5.442353 0.563873
In [149]: df.apply(np.exp)
Out[149]:
one two three
a 4.034899 5.885648 NaN
b 1.409244 6.767440 0.950858
c 2.004201 4.385785 3.412466
d NaN 1.322262 0.541630
apply()
方法也会根据字符串方法名称进行调度。
In [150]: df.apply("mean")
Out[150]:
one 0.811094
two 1.360588
three 0.187958
dtype: float64
In [151]: df.apply("mean", axis=1)
Out[151]:
a 1.583749
b 0.734929
c 1.133683
d -0.166914
dtype: float64
传递给 apply()
的函数的返回类型会影响 DataFrame.apply
的最终输出类型,默认行为如下:
- 如果应用的函数返回一个
Series
,最终输出是一个DataFrame
。列与应用函数返回的Series
的索引匹配。 - 如果应用的函数返回任何其他类型,最终输出是一个
Series
。
可以使用result_type
覆盖此默认行为,它接受三个选项:reduce
、broadcast
和expand
。这将决定类似列表的返回值如何扩展(或不扩展)为一个DataFrame
。
apply()
结合一些巧妙的技巧可以用来回答关于数据集的许多问题。例如,假设我们想要提取每列的最大值发生的日期:
In [152]: tsdf = pd.DataFrame(
.....: np.random.randn(1000, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=1000),
.....: )
.....:
In [153]: tsdf.apply(lambda x: x.idxmax())
Out[153]:
A 2000-08-06
B 2001-01-18
C 2001-07-18
dtype: datetime64[ns]
您还可以向apply()
方法传递其他参数和关键字参数。
In [154]: def subtract_and_divide(x, sub, divide=1):
.....: return (x - sub) / divide
.....:
In [155]: df_udf = pd.DataFrame(np.ones((2, 2)))
In [156]: df_udf.apply(subtract_and_divide, args=(5,), divide=3)
Out[156]:
0 1
0 -1.333333 -1.333333
1 -1.333333 -1.333333
另一个有用的功能是能够传递 Series 方法来对每列或每行执行一些 Series 操作:
代码语言:javascript复制In [157]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [158]: tsdf.iloc[3:7] = np.nan
In [159]: tsdf
Out[159]:
A B C
2000-01-01 -0.158131 -0.232466 0.321604
2000-01-02 -1.810340 -3.105758 0.433834
2000-01-03 -1.209847 -1.156793 -0.136794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -0.653602 0.178875 1.008298
2000-01-09 1.007996 0.462824 0.254472
2000-01-10 0.307473 0.600337 1.643950
In [160]: tsdf.apply(pd.Series.interpolate)
Out[160]:
A B C
2000-01-01 -0.158131 -0.232466 0.321604
2000-01-02 -1.810340 -3.105758 0.433834
2000-01-03 -1.209847 -1.156793 -0.136794
2000-01-04 -1.098598 -0.889659 0.092225
2000-01-05 -0.987349 -0.622526 0.321243
2000-01-06 -0.876100 -0.355392 0.550262
2000-01-07 -0.764851 -0.088259 0.779280
2000-01-08 -0.653602 0.178875 1.008298
2000-01-09 1.007996 0.462824 0.254472
2000-01-10 0.307473 0.600337 1.643950
最后,apply()
接受一个默认为 False 的参数raw
,在应用函数之前将每行或每列转换为一个 Series。当设置为 True 时,传递的函数将接收一个 ndarray 对象,如果您不需要索引功能,则具有积极的性能影响。
聚合 API
聚合 API 允许以一种简洁的方式表达可能的多个聚合操作。这个 API 在 pandas 对象中是相似的,参见 groupby API、window API 和 resample API。聚合的入口点是DataFrame.aggregate()
,或别名DataFrame.agg()
。
我们将使用与上面类似的起始框架:
代码语言:javascript复制In [161]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [162]: tsdf.iloc[3:7] = np.nan
In [163]: tsdf
Out[163]:
A B C
2000-01-01 1.257606 1.004194 0.167574
2000-01-02 -0.749892 0.288112 -0.757304
2000-01-03 -0.207550 -0.298599 0.116018
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.814347 -0.257623 0.869226
2000-01-09 -0.250663 -1.206601 0.896839
2000-01-10 2.169758 -1.333363 0.283157
使用单个函数等同于apply()
。您还可以将命名方法作为字符串传递。这些将返回聚合输出的Series
:
In [164]: tsdf.agg(lambda x: np.sum(x))
Out[164]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
In [165]: tsdf.agg("sum")
Out[165]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
# these are equivalent to a ``.sum()`` because we are aggregating
# on a single function
In [166]: tsdf.sum()
Out[166]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
对Series
进行单个聚合将返回一个标量值:
In [167]: tsdf["A"].agg("sum")
Out[167]: 3.033606102414146
使用多个函数进行聚合
您可以将多个聚合参数作为列表传递。每个传递函数的结果将成为结果DataFrame
中的一行。这些自然地从聚合函数命名。
In [168]: tsdf.agg(["sum"])
Out[168]:
A B C
sum 3.033606 -1.803879 1.57551
多个函数产生多行:
代码语言:javascript复制In [169]: tsdf.agg(["sum", "mean"])
Out[169]:
A B C
sum 3.033606 -1.803879 1.575510
mean 0.505601 -0.300647 0.262585
在Series
上,多个函数返回一个由函数名称索引的Series
:
In [170]: tsdf["A"].agg(["sum", "mean"])
Out[170]:
sum 3.033606
mean 0.505601
Name: A, dtype: float64
传递一个lambda
函数将产生一个名为<lambda>
的行:
In [171]: tsdf["A"].agg(["sum", lambda x: x.mean()])
Out[171]:
sum 3.033606
<lambda> 0.505601
Name: A, dtype: float64
传递一个命名函数将为该行产生该名称:
代码语言:javascript复制In [172]: def mymean(x):
.....: return x.mean()
.....:
In [173]: tsdf["A"].agg(["sum", mymean])
Out[173]:
sum 3.033606
mymean 0.505601
Name: A, dtype: float64
使用字典进行聚合
将列名的字典传递给标量或标量列表,以便将它们传递给 DataFrame.agg
,允许您自定义将哪些函数应用于哪些列。请注意,结果不以任何特定顺序排列,您可以使用 OrderedDict
来保证顺序。
In [174]: tsdf.agg({"A": "mean", "B": "sum"})
Out[174]:
A 0.505601
B -1.803879
dtype: float64
传递类似列表的将生成一个 DataFrame
输出。您将获得所有聚合器的矩阵式输出。输出将由所有唯一的函数组成。那些未在特定列中注意到的将为 NaN
:
In [175]: tsdf.agg({"A": ["mean", "min"], "B": "sum"})
Out[175]:
A B
mean 0.505601 NaN
min -0.749892 NaN
sum NaN -1.803879
自定义描述
使用 .agg()
可以轻松创建自定义描述函数,类似于内置的描述函数。
In [176]: from functools import partial
In [177]: q_25 = partial(pd.Series.quantile, q=0.25)
In [178]: q_25.__name__ = "25%"
In [179]: q_75 = partial(pd.Series.quantile, q=0.75)
In [180]: q_75.__name__ = "75%"
In [181]: tsdf.agg(["count", "mean", "std", "min", q_25, "median", q_75, "max"])
Out[181]:
A B C
count 6.000000 6.000000 6.000000
mean 0.505601 -0.300647 0.262585
std 1.103362 0.887508 0.606860
min -0.749892 -1.333363 -0.757304
25% -0.239885 -0.979600 0.128907
median 0.303398 -0.278111 0.225365
75% 1.146791 0.151678 0.722709
max 2.169758 1.004194 0.896839
```### Transform API
`transform()` 方法返回一个与原始索引相同(大小相同)的对象。此 API 允许您一次提供*多个*操作,而不是一个接一个地提供。它的 API 与 `.agg` API 非常相似。
我们创建了一个类似于上述部分中使用的框架。
```py
In [182]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [183]: tsdf.iloc[3:7] = np.nan
In [184]: tsdf
Out[184]:
A B C
2000-01-01 -0.428759 -0.864890 -0.675341
2000-01-02 -0.168731 1.338144 -1.279321
2000-01-03 -1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 -1.240447 -0.201052
2000-01-09 -0.157795 0.791197 -1.144209
2000-01-10 -0.030876 0.371900 0.061932
对整个框架进行转换。.transform()
允许输入函数为:NumPy 函数、字符串函数名称或用户定义的函数。
In [185]: tsdf.transform(np.abs)
Out[185]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
In [186]: tsdf.transform("abs")
Out[186]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
In [187]: tsdf.transform(lambda x: x.abs())
Out[187]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
这里 transform()
接收了一个函数;这相当于应用 ufunc。
In [188]: np.abs(tsdf)
Out[188]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
将单个函数传递给 .transform()
与 Series
将产生一个返回的单个 Series
。
In [189]: tsdf["A"].transform(np.abs)
Out[189]:
2000-01-01 0.428759
2000-01-02 0.168731
2000-01-03 1.621034
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 NaN
2000-01-07 NaN
2000-01-08 0.254374
2000-01-09 0.157795
2000-01-10 0.030876
Freq: D, Name: A, dtype: float64
使用多个函数进行转换
传递多个函数将生成一个列 MultiIndexed DataFrame。第一级将是原始框架的列名;第二级将是转换函数的名称。
代码语言:javascript复制In [190]: tsdf.transform([np.abs, lambda x: x 1])
Out[190]:
A B C
absolute <lambda> absolute <lambda> absolute <lambda>
2000-01-01 0.428759 0.571241 0.864890 0.135110 0.675341 0.324659
2000-01-02 0.168731 0.831269 1.338144 2.338144 1.279321 -0.279321
2000-01-03 1.621034 -0.621034 0.438107 1.438107 0.903794 1.903794
2000-01-04 NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN NaN NaN
2000-01-08 0.254374 1.254374 1.240447 -0.240447 0.201052 0.798948
2000-01-09 0.157795 0.842205 0.791197 1.791197 1.144209 -0.144209
2000-01-10 0.030876 0.969124 0.371900 1.371900 0.061932 1.061932
将多个函数传递给 Series 将产生一个 DataFrame。结果的列名将是转换函数。
代码语言:javascript复制In [191]: tsdf["A"].transform([np.abs, lambda x: x 1])
Out[191]:
absolute <lambda>
2000-01-01 0.428759 0.571241
2000-01-02 0.168731 0.831269
2000-01-03 1.621034 -0.621034
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.254374 1.254374
2000-01-09 0.157795 0.842205
2000-01-10 0.030876 0.969124
使用字典进行转换
传递一个函数字典将允许按列进行选择性转换。
代码语言:javascript复制In [192]: tsdf.transform({"A": np.abs, "B": lambda x: x 1})
Out[192]:
A B
2000-01-01 0.428759 0.135110
2000-01-02 0.168731 2.338144
2000-01-03 1.621034 1.438107
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.254374 -0.240447
2000-01-09 0.157795 1.791197
2000-01-10 0.030876 1.371900
传递函数列表的字典将生成一个具有这些选择性转换的 MultiIndexed DataFrame。
代码语言:javascript复制In [193]: tsdf.transform({"A": np.abs, "B": [lambda x: x 1, "sqrt"]})
Out[193]:
A B
absolute <lambda> sqrt
2000-01-01 0.428759 0.135110 NaN
2000-01-02 0.168731 2.338144 1.156782
2000-01-03 1.621034 1.438107 0.661897
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 -0.240447 NaN
2000-01-09 0.157795 1.791197 0.889493
2000-01-10 0.030876 1.371900 0.609836
```### 逐元素应用函数
由于并非所有函数都可以进行矢量化(接受 NumPy 数组并返回另一个数组或值),因此 DataFrame 上的方法 `map()` 和类似地 Series 上的方法 `map()` 接受任何 Python 函数,该函数接受一个值并返回一个值。例如:
```py
In [194]: df4 = df.copy()
In [195]: df4
Out[195]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [196]: def f(x):
.....: return len(str(x))
.....:
In [197]: df4["one"].map(f)
Out[197]:
a 18
b 19
c 18
d 3
Name: one, dtype: int64
In [198]: df4.map(f)
Out[198]:
one two three
a 18 17 3
b 19 18 20
c 18 18 16
d 3 19 19
Series.map()
还有一个附加功能;它可以用于轻松“链接”或“映射”由辅助序列定义的值。这与合并/连接功能密切相关:
In [199]: s = pd.Series(
.....: ["six", "seven", "six", "seven", "six"], index=["a", "b", "c", "d", "e"]
.....: )
.....:
In [200]: t = pd.Series({"six": 6.0, "seven": 7.0})
In [201]: s
Out[201]:
a six
b seven
c six
d seven
e six
dtype: object
In [202]: s.map(t)
Out[202]:
a 6.0
b 7.0
c 6.0
d 7.0
e 6.0
dtype: float64
```### 表格级别的函数应用
可以将 `DataFrames` 和 `Series` 传递给函数。但是,如果函数需要在链中调用,请考虑使用 `pipe()` 方法。
首先进行一些设置:
```py
In [140]: def extract_city_name(df):
.....: """
.....: Chicago, IL -> Chicago for city_name column
.....: """
.....: df["city_name"] = df["city_and_code"].str.split(",").str.get(0)
.....: return df
.....:
In [141]: def add_country_name(df, country_name=None):
.....: """
.....: Chicago -> Chicago-US for city_name column
.....: """
.....: col = "city_name"
.....: df["city_and_country"] = df[col] country_name
.....: return df
.....:
In [142]: df_p = pd.DataFrame({"city_and_code": ["Chicago, IL"]})
extract_city_name
和 add_country_name
是接受并返回 DataFrames
的函数。
现在比较以下内容:
代码语言:javascript复制In [143]: add_country_name(extract_city_name(df_p), country_name="US")
Out[143]:
city_and_code city_name city_and_country
0 Chicago, IL Chicago ChicagoUS
等同于:
代码语言:javascript复制In [144]: df_p.pipe(extract_city_name).pipe(add_country_name, country_name="US")
Out[144]:
city_and_code city_name city_and_country
0 Chicago, IL Chicago ChicagoUS
pandas 鼓励第二种风格,即方法链。pipe
让您可以在方法链中轻松使用自己或另一个库的函数,与 pandas 的方法一起使用。
在上面的示例中,函数 extract_city_name
和 add_country_name
分别期望 DataFrame
作为第一个位置参数。如果您希望应用的函数将其数据作为,比如说,第二个参数呢?在这种情况下,提供一个元组 (callable, data_keyword)
给 pipe
。.pipe
将把 DataFrame
路由到元组中指定的参数。
例如,我们可以使用 statsmodels 进行回归拟合。他们的 API 首先期望一个公式,然后是第二个参数 data
的 DataFrame
。我们将函数、关键字对 (sm.ols, 'data')
传递给 pipe
:
In [147]: import statsmodels.formula.api as sm
In [148]: bb = pd.read_csv("data/baseball.csv", index_col="id")
In [149]: (
.....: bb.query("h > 0")
.....: .assign(ln_h=lambda df: np.log(df.h))
.....: .pipe((sm.ols, "data"), "hr ~ ln_h year g C(lg)")
.....: .fit()
.....: .summary()
.....: )
.....:
Out[149]:
<class 'statsmodels.iolib.summary.Summary'>
"""
OLS Regression Results
==============================================================================
Dep. Variable: hr R-squared: 0.685
Model: OLS Adj. R-squared: 0.665
Method: Least Squares F-statistic: 34.28
Date: Tue, 22 Nov 2022 Prob (F-statistic): 3.48e-15
Time: 05:34:17 Log-Likelihood: -205.92
No. Observations: 68 AIC: 421.8
Df Residuals: 63 BIC: 432.9
Df Model: 4
Covariance Type: nonrobust
===============================================================================
coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------------
Intercept -8484.7720 4664.146 -1.819 0.074 -1.78e 04 835.780
C(lg)[T.NL] -2.2736 1.325 -1.716 0.091 -4.922 0.375
ln_h -1.3542 0.875 -1.547 0.127 -3.103 0.395
year 4.2277 2.324 1.819 0.074 -0.417 8.872
g 0.1841 0.029 6.258 0.000 0.125 0.243
==============================================================================
Omnibus: 10.875 Durbin-Watson: 1.999
Prob(Omnibus): 0.004 Jarque-Bera (JB): 17.298
Skew: 0.537 Prob(JB): 0.000175
Kurtosis: 5.225 Cond. No. 1.49e 07
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.49e 07. This might indicate that there are
strong multicollinearity or other numerical problems.
"""
管道方法受到 Unix 管道以及最近的 dplyr 和 magrittr 的启发,它们引入了流行的 (%>%)
(读取管道)操作符用于 R。这里的 pipe
实现非常干净,感觉就像在 Python 中本来就应该有的。我们鼓励您查看 pipe()
的源代码。
行或列的函数应用
可以使用 apply()
方法沿着 DataFrame 的轴应用任意函数,该方法与描述性统计方法类似,都接受一个可选的 axis
参数:
In [145]: df.apply(lambda x: np.mean(x))
Out[145]:
one 0.811094
two 1.360588
three 0.187958
dtype: float64
In [146]: df.apply(lambda x: np.mean(x), axis=1)
Out[146]:
a 1.583749
b 0.734929
c 1.133683
d -0.166914
dtype: float64
In [147]: df.apply(lambda x: x.max() - x.min())
Out[147]:
one 1.051928
two 1.632779
three 1.840607
dtype: float64
In [148]: df.apply(np.cumsum)
Out[148]:
one two three
a 1.394981 1.772517 NaN
b 1.738035 3.684640 -0.050390
c 2.433281 5.163008 1.177045
d NaN 5.442353 0.563873
In [149]: df.apply(np.exp)
Out[149]:
one two three
a 4.034899 5.885648 NaN
b 1.409244 6.767440 0.950858
c 2.004201 4.385785 3.412466
d NaN 1.322262 0.541630
apply()
方法还可以根据字符串方法名进行分派。
In [150]: df.apply("mean")
Out[150]:
one 0.811094
two 1.360588
three 0.187958
dtype: float64
In [151]: df.apply("mean", axis=1)
Out[151]:
a 1.583749
b 0.734929
c 1.133683
d -0.166914
dtype: float64
传递给 apply()
的函数的返回类型会影响默认行为下 DataFrame.apply
的最终输出类型:
- 如果应用的函数返回一个
Series
,最终输出是一个DataFrame
。列匹配应用函数返回的Series
的索引。 - 如果应用的函数返回其他任何类型,则最终输出是一个
Series
。
可以使用 result_type
覆盖此默认行为,它接受三个选项:reduce
、broadcast
和 expand
。这些选项将决定类似列表的返回值如何扩展(或不扩展)为 DataFrame
。
apply()
结合一些巧妙的方法可以回答关于数据集的许多问题。例如,假设我们想要提取每列中最大值出现的日期:
In [152]: tsdf = pd.DataFrame(
.....: np.random.randn(1000, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=1000),
.....: )
.....:
In [153]: tsdf.apply(lambda x: x.idxmax())
Out[153]:
A 2000-08-06
B 2001-01-18
C 2001-07-18
dtype: datetime64[ns]
您还可以将额外的参数和关键字参数传递给apply()
方法。
In [154]: def subtract_and_divide(x, sub, divide=1):
.....: return (x - sub) / divide
.....:
In [155]: df_udf = pd.DataFrame(np.ones((2, 2)))
In [156]: df_udf.apply(subtract_and_divide, args=(5,), divide=3)
Out[156]:
0 1
0 -1.333333 -1.333333
1 -1.333333 -1.333333
另一个有用的功能是能够传递 Series 方法来对每列或每行执行一些 Series 操作:
代码语言:javascript复制In [157]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [158]: tsdf.iloc[3:7] = np.nan
In [159]: tsdf
Out[159]:
A B C
2000-01-01 -0.158131 -0.232466 0.321604
2000-01-02 -1.810340 -3.105758 0.433834
2000-01-03 -1.209847 -1.156793 -0.136794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -0.653602 0.178875 1.008298
2000-01-09 1.007996 0.462824 0.254472
2000-01-10 0.307473 0.600337 1.643950
In [160]: tsdf.apply(pd.Series.interpolate)
Out[160]:
A B C
2000-01-01 -0.158131 -0.232466 0.321604
2000-01-02 -1.810340 -3.105758 0.433834
2000-01-03 -1.209847 -1.156793 -0.136794
2000-01-04 -1.098598 -0.889659 0.092225
2000-01-05 -0.987349 -0.622526 0.321243
2000-01-06 -0.876100 -0.355392 0.550262
2000-01-07 -0.764851 -0.088259 0.779280
2000-01-08 -0.653602 0.178875 1.008298
2000-01-09 1.007996 0.462824 0.254472
2000-01-10 0.307473 0.600337 1.643950
最后,apply()
接受一个默认为 False 的参数raw
,在应用函数之前将每行或每列转换为一个 Series。当设置为 True 时,传递的函数将收到一个 ndarray 对象,如果您不需要索引功能,则具有积极的性能影响。
聚合 API
聚合 API 允许以一种简洁的方式表达可能的多个聚合操作。这个 API 在 pandas 对象中是相似的,参见 groupby API,window API,以及 resample API。聚合的入口点是DataFrame.aggregate()
,或别名DataFrame.agg()
。
我们将使用与上面类似的起始框架:
代码语言:javascript复制In [161]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [162]: tsdf.iloc[3:7] = np.nan
In [163]: tsdf
Out[163]:
A B C
2000-01-01 1.257606 1.004194 0.167574
2000-01-02 -0.749892 0.288112 -0.757304
2000-01-03 -0.207550 -0.298599 0.116018
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.814347 -0.257623 0.869226
2000-01-09 -0.250663 -1.206601 0.896839
2000-01-10 2.169758 -1.333363 0.283157
使用单个函数等同于apply()
。您还可以将命名方法作为字符串传递。这些将返回聚合输出的Series
:
In [164]: tsdf.agg(lambda x: np.sum(x))
Out[164]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
In [165]: tsdf.agg("sum")
Out[165]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
# these are equivalent to a ``.sum()`` because we are aggregating
# on a single function
In [166]: tsdf.sum()
Out[166]:
A 3.033606
B -1.803879
C 1.575510
dtype: float64
对Series
进行单个聚合将返回一个标量值:
In [167]: tsdf["A"].agg("sum")
Out[167]: 3.033606102414146
使用多个函数进行聚合
您可以将多个聚合参数作为列表传递。每个传递函数的结果将成为结果DataFrame
中的一行。这些自然地从聚合函数命名。
In [168]: tsdf.agg(["sum"])
Out[168]:
A B C
sum 3.033606 -1.803879 1.57551
多个函数产生多个行:
代码语言:javascript复制In [169]: tsdf.agg(["sum", "mean"])
Out[169]:
A B C
sum 3.033606 -1.803879 1.575510
mean 0.505601 -0.300647 0.262585
在Series
上,多个函数返回一个Series
,由函数名称索引:
In [170]: tsdf["A"].agg(["sum", "mean"])
Out[170]:
sum 3.033606
mean 0.505601
Name: A, dtype: float64
传递一个lambda
函数将产生一个<lambda>
命名行:
In [171]: tsdf["A"].agg(["sum", lambda x: x.mean()])
Out[171]:
sum 3.033606
<lambda> 0.505601
Name: A, dtype: float64
传递一个命名函数将为该行产生该名称:
代码语言:javascript复制In [172]: def mymean(x):
.....: return x.mean()
.....:
In [173]: tsdf["A"].agg(["sum", mymean])
Out[173]:
sum 3.033606
mymean 0.505601
Name: A, dtype: float64
使用字典进行聚合
将列名的字典传递给标量或标量列表,以便DataFrame.agg
允许您自定义应用于哪些列的函数。请注意,结果不按任何特定顺序排列,您可以使用OrderedDict
来保证顺序。
In [174]: tsdf.agg({"A": "mean", "B": "sum"})
Out[174]:
A 0.505601
B -1.803879
dtype: float64
传递类似列表将生成一个DataFrame
输出。您将获得所有聚合器的类似矩阵的输出。输出将包含所有唯一的函数。那些没有针对特定列指定的函数将是NaN
:
In [175]: tsdf.agg({"A": ["mean", "min"], "B": "sum"})
Out[175]:
A B
mean 0.505601 NaN
min -0.749892 NaN
sum NaN -1.803879
自定义描述
使用 .agg()
可以轻松创建自定义描述函数,类似于内置的描述函数。
In [176]: from functools import partial
In [177]: q_25 = partial(pd.Series.quantile, q=0.25)
In [178]: q_25.__name__ = "25%"
In [179]: q_75 = partial(pd.Series.quantile, q=0.75)
In [180]: q_75.__name__ = "75%"
In [181]: tsdf.agg(["count", "mean", "std", "min", q_25, "median", q_75, "max"])
Out[181]:
A B C
count 6.000000 6.000000 6.000000
mean 0.505601 -0.300647 0.262585
std 1.103362 0.887508 0.606860
min -0.749892 -1.333363 -0.757304
25% -0.239885 -0.979600 0.128907
median 0.303398 -0.278111 0.225365
75% 1.146791 0.151678 0.722709
max 2.169758 1.004194 0.896839
使用多个函数进行聚合
您可以将多个聚合参数作为列表传递。每个传递函数的结果将成为生成的 DataFrame
中的一行。这些自然地从聚合函数命名。
In [168]: tsdf.agg(["sum"])
Out[168]:
A B C
sum 3.033606 -1.803879 1.57551
多个函数产生多行:
代码语言:javascript复制In [169]: tsdf.agg(["sum", "mean"])
Out[169]:
A B C
sum 3.033606 -1.803879 1.575510
mean 0.505601 -0.300647 0.262585
对于 Series
,多个函数返回一个由函数名称索引的 Series
:
In [170]: tsdf["A"].agg(["sum", "mean"])
Out[170]:
sum 3.033606
mean 0.505601
Name: A, dtype: float64
传递 lambda
函数将产生一个命名为 <lambda>
的行:
In [171]: tsdf["A"].agg(["sum", lambda x: x.mean()])
Out[171]:
sum 3.033606
<lambda> 0.505601
Name: A, dtype: float64
传递命名函数将产生该行的名称:
代码语言:javascript复制In [172]: def mymean(x):
.....: return x.mean()
.....:
In [173]: tsdf["A"].agg(["sum", mymean])
Out[173]:
sum 3.033606
mymean 0.505601
Name: A, dtype: float64
使用字典进行聚合
将列名称的字典传递给标量或标量列表,以便 DataFrame.agg
允许您自定义应用于哪些列的函数。请注意,结果没有任何特定顺序,您可以改用 OrderedDict
以保证顺序。
In [174]: tsdf.agg({"A": "mean", "B": "sum"})
Out[174]:
A 0.505601
B -1.803879
dtype: float64
传递类似列表将生成一个 DataFrame
输出。您将获得所有聚合器的矩阵样式输出。输出将由所有唯一函数组成。那些未特定于特定列的函数将是 NaN
:
In [175]: tsdf.agg({"A": ["mean", "min"], "B": "sum"})
Out[175]:
A B
mean 0.505601 NaN
min -0.749892 NaN
sum NaN -1.803879
自定义描述
使用 .agg()
可以轻松创建自定义描述函数,类似于内置的描述函数。
In [176]: from functools import partial
In [177]: q_25 = partial(pd.Series.quantile, q=0.25)
In [178]: q_25.__name__ = "25%"
In [179]: q_75 = partial(pd.Series.quantile, q=0.75)
In [180]: q_75.__name__ = "75%"
In [181]: tsdf.agg(["count", "mean", "std", "min", q_25, "median", q_75, "max"])
Out[181]:
A B C
count 6.000000 6.000000 6.000000
mean 0.505601 -0.300647 0.262585
std 1.103362 0.887508 0.606860
min -0.749892 -1.333363 -0.757304
25% -0.239885 -0.979600 0.128907
median 0.303398 -0.278111 0.225365
75% 1.146791 0.151678 0.722709
max 2.169758 1.004194 0.896839
转换 API
transform()
方法返回一个与原始对象(大小相同)索引相同的对象。该 API 允许您一次性提供多个操作,而不是一个接一个的操作。其 API 与 .agg
API 非常相似。
我们创建了一个类似于上述部分中使用的框架。
代码语言:javascript复制In [182]: tsdf = pd.DataFrame(
.....: np.random.randn(10, 3),
.....: columns=["A", "B", "C"],
.....: index=pd.date_range("1/1/2000", periods=10),
.....: )
.....:
In [183]: tsdf.iloc[3:7] = np.nan
In [184]: tsdf
Out[184]:
A B C
2000-01-01 -0.428759 -0.864890 -0.675341
2000-01-02 -0.168731 1.338144 -1.279321
2000-01-03 -1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 -1.240447 -0.201052
2000-01-09 -0.157795 0.791197 -1.144209
2000-01-10 -0.030876 0.371900 0.061932
转换整个框架。.transform()
允许输入函数为:NumPy 函数、字符串函数名称或用户定义的函数。
In [185]: tsdf.transform(np.abs)
Out[185]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
In [186]: tsdf.transform("abs")
Out[186]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
In [187]: tsdf.transform(lambda x: x.abs())
Out[187]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
这里 transform()
接收到一个单个函数;这相当于应用 ufunc。
In [188]: np.abs(tsdf)
Out[188]:
A B C
2000-01-01 0.428759 0.864890 0.675341
2000-01-02 0.168731 1.338144 1.279321
2000-01-03 1.621034 0.438107 0.903794
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 1.240447 0.201052
2000-01-09 0.157795 0.791197 1.144209
2000-01-10 0.030876 0.371900 0.061932
将单个函数传递给 .transform()
与 Series
将返回单个 Series
。
In [189]: tsdf["A"].transform(np.abs)
Out[189]:
2000-01-01 0.428759
2000-01-02 0.168731
2000-01-03 1.621034
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 NaN
2000-01-07 NaN
2000-01-08 0.254374
2000-01-09 0.157795
2000-01-10 0.030876
Freq: D, Name: A, dtype: float64
使用多个函数进行转换
传递多个函数将产生一个列 MultiIndexed DataFrame。第一级将是原始框架列名称;第二级将是转换函数的名称。
代码语言:javascript复制In [190]: tsdf.transform([np.abs, lambda x: x 1])
Out[190]:
A B C
absolute <lambda> absolute <lambda> absolute <lambda>
2000-01-01 0.428759 0.571241 0.864890 0.135110 0.675341 0.324659
2000-01-02 0.168731 0.831269 1.338144 2.338144 1.279321 -0.279321
2000-01-03 1.621034 -0.621034 0.438107 1.438107 0.903794 1.903794
2000-01-04 NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN NaN NaN
2000-01-08 0.254374 1.254374 1.240447 -0.240447 0.201052 0.798948
2000-01-09 0.157795 0.842205 0.791197 1.791197 1.144209 -0.144209
2000-01-10 0.030876 0.969124 0.371900 1.371900 0.061932 1.061932
对 Series 传递多个函数将产生一个 DataFrame。生成的列名称将是转换函数。
代码语言:javascript复制In [191]: tsdf["A"].transform([np.abs, lambda x: x 1])
Out[191]:
absolute <lambda>
2000-01-01 0.428759 0.571241
2000-01-02 0.168731 0.831269
2000-01-03 1.621034 -0.621034
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.254374 1.254374
2000-01-09 0.157795 0.842205
2000-01-10 0.030876 0.969124
使用字典进行转换
传递函数字典将允许按列选择性转换。
代码语言:javascript复制In [192]: tsdf.transform({"A": np.abs, "B": lambda x: x 1})
Out[192]:
A B
2000-01-01 0.428759 0.135110
2000-01-02 0.168731 2.338144
2000-01-03 1.621034 1.438107
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.254374 -0.240447
2000-01-09 0.157795 1.791197
2000-01-10 0.030876 1.371900
传递列表的字典将生成一个具有这些选择性转换的 MultiIndexed DataFrame。
代码语言:javascript复制In [193]: tsdf.transform({"A": np.abs, "B": [lambda x: x 1, "sqrt"]})
Out[193]:
A B
absolute <lambda> sqrt
2000-01-01 0.428759 0.135110 NaN
2000-01-02 0.168731 2.338144 1.156782
2000-01-03 1.621034 1.438107 0.661897
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 -0.240447 NaN
2000-01-09 0.157795 1.791197 0.889493
2000-01-10 0.030876 1.371900 0.609836
使用多个函数进行转换
传递多个函数将生成一个列 MultiIndexed DataFrame。第一级将是原始帧列名;第二级将是变换函数的名称。
代码语言:javascript复制In [190]: tsdf.transform([np.abs, lambda x: x 1])
Out[190]:
A B C
absolute <lambda> absolute <lambda> absolute <lambda>
2000-01-01 0.428759 0.571241 0.864890 0.135110 0.675341 0.324659
2000-01-02 0.168731 0.831269 1.338144 2.338144 1.279321 -0.279321
2000-01-03 1.621034 -0.621034 0.438107 1.438107 0.903794 1.903794
2000-01-04 NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN NaN NaN
2000-01-08 0.254374 1.254374 1.240447 -0.240447 0.201052 0.798948
2000-01-09 0.157795 0.842205 0.791197 1.791197 1.144209 -0.144209
2000-01-10 0.030876 0.969124 0.371900 1.371900 0.061932 1.061932
传递多个函数给一个 Series 将产生一个 DataFrame。结果列名将是变换函数。
代码语言:javascript复制In [191]: tsdf["A"].transform([np.abs, lambda x: x 1])
Out[191]:
absolute <lambda>
2000-01-01 0.428759 0.571241
2000-01-02 0.168731 0.831269
2000-01-03 1.621034 -0.621034
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.254374 1.254374
2000-01-09 0.157795 0.842205
2000-01-10 0.030876 0.969124
使用字典进行转换
传递一个函数的字典将允许按列进行选择性变换。
代码语言:javascript复制In [192]: tsdf.transform({"A": np.abs, "B": lambda x: x 1})
Out[192]:
A B
2000-01-01 0.428759 0.135110
2000-01-02 0.168731 2.338144
2000-01-03 1.621034 1.438107
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.254374 -0.240447
2000-01-09 0.157795 1.791197
2000-01-10 0.030876 1.371900
传递一个列表的字典将生成一个具有这些选择性转换的 MultiIndexed DataFrame。
代码语言:javascript复制In [193]: tsdf.transform({"A": np.abs, "B": [lambda x: x 1, "sqrt"]})
Out[193]:
A B
absolute <lambda> sqrt
2000-01-01 0.428759 0.135110 NaN
2000-01-02 0.168731 2.338144 1.156782
2000-01-03 1.621034 1.438107 0.661897
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.254374 -0.240447 NaN
2000-01-09 0.157795 1.791197 0.889493
2000-01-10 0.030876 1.371900 0.609836
应用逐元素函数
由于并非所有函数都可以矢量化(接受 NumPy 数组并返回另一个数组或值),因此 DataFrame 上的方法 map()
和类似地 Series 上的 map()
接受任何接受单个值并返回单个值的 Python 函数。例如:
In [194]: df4 = df.copy()
In [195]: df4
Out[195]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [196]: def f(x):
.....: return len(str(x))
.....:
In [197]: df4["one"].map(f)
Out[197]:
a 18
b 19
c 18
d 3
Name: one, dtype: int64
In [198]: df4.map(f)
Out[198]:
one two three
a 18 17 3
b 19 18 20
c 18 18 16
d 3 19 19
Series.map()
还具有额外的功能;它可以用于轻松“链接”或“映射”由次级系列定义的值。这与合并/连接功能密切相关:
In [199]: s = pd.Series(
.....: ["six", "seven", "six", "seven", "six"], index=["a", "b", "c", "d", "e"]
.....: )
.....:
In [200]: t = pd.Series({"six": 6.0, "seven": 7.0})
In [201]: s
Out[201]:
a six
b seven
c six
d seven
e six
dtype: object
In [202]: s.map(t)
Out[202]:
a 6.0
b 7.0
c 6.0
d 7.0
e 6.0
dtype: float64
重新索引和更改标签
reindex()
是 pandas 中的基本数据对齐方法。它用于实现几乎所有依赖标签对齐功能的其他功能。重新索引意味着使数据符合与特定轴上的给定标签集匹配的数据。这可以实现几个目标:
- 重新排列现有数据以匹配新的标签集
- 在不存在该标签的标签位置插入缺失值(NA)标记
- 如果指定了,可以使用逻辑填充缺失标签的数据(与处理时间序列数据高度相关)
这里是一个简单的例子:
代码语言:javascript复制In [203]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
In [204]: s
Out[204]:
a 1.695148
b 1.328614
c 1.234686
d -0.385845
e -1.326508
dtype: float64
In [205]: s.reindex(["e", "b", "f", "d"])
Out[205]:
e -1.326508
b 1.328614
f NaN
d -0.385845
dtype: float64
在这里,f
标签未包含在 Series 中,因此在结果中显示为 NaN
。
对于 DataFrame,您可以同时重新索引索引和列:
代码语言:javascript复制In [206]: df
Out[206]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [207]: df.reindex(index=["c", "f", "b"], columns=["three", "two", "one"])
Out[207]:
three two one
c 1.227435 1.478369 0.695246
f NaN NaN NaN
b -0.050390 1.912123 0.343054
注意,包含实际轴标签的 Index
对象可以在对象之间共享。因此,如果我们有一个 Series 和一个 DataFrame,则可以执行以下操作:
In [208]: rs = s.reindex(df.index)
In [209]: rs
Out[209]:
a 1.695148
b 1.328614
c 1.234686
d -0.385845
dtype: float64
In [210]: rs.index is df.index
Out[210]: True
这意味着重新索引的 Series 的索引与 DataFrame 的索引是相同的 Python 对象。
DataFrame.reindex()
还支持一种“轴样式”调用约定,其中您指定单个 labels
参数以及它适用的 axis
。
In [211]: df.reindex(["c", "f", "b"], axis="index")
Out[211]:
one two three
c 0.695246 1.478369 1.227435
f NaN NaN NaN
b 0.343054 1.912123 -0.050390
In [212]: df.reindex(["three", "two", "one"], axis="columns")
Out[212]:
three two one
a NaN 1.772517 1.394981
b -0.050390 1.912123 0.343054
c 1.227435 1.478369 0.695246
d -0.613172 0.279344 NaN
另请参阅
多索引 / 高级索引 是进行重新索引的更简洁方式。
注意
在编写对性能敏感的代码时,有充分的理由花一些时间成为一个重新索引的忍者:许多操作在预对齐数据上更快。添加两个不对齐的 DataFrame 内部会触发重新索引步骤。对于探索性分析,你几乎不会注意到差异(因为reindex
已经经过了大量优化),但是当 CPU 周期很重要时,偶尔在某些地方添加一些显式的reindex
调用可能会产生影响。