ABoVE: Modeled Top Cover by Plant Functional Type over Alaska and Yukon, 1985-2020
1985-2020 年阿拉斯加和育空地区按植物功能类型划分的模型表层覆盖率
简介
文件修订日期:2022-05-31
数据集版本: 1.1
本数据集包含阿拉斯加和育空地区北极和北方地区按植物功能类型(PFT)划分的模型顶盖估计值的 GeoTIFF(*.tif)数据文件。从 1985 年到 2020 年,以 5 年为间隔列出了单个年份的估算值。此外,还包括均方根误差 (RMSE) 和来源年份,表示顶层覆盖图中的像素是在哪一年绘制的。植物功能类型包括针叶树、阔叶树、落叶灌木、常绿灌木、禾本科植物、草本植物和轻型大型裸子植物。估算值是通过两个随机梯度增强模型的组合得出的,这两个模型使用了环境协变量和光谱协变量。环境协变量代表地形、气候、永久冻土、水文和物候梯度,光谱协变量基于 1984-2020 年间收集的陆地卫星专题成像仪 (TM)、增强型专题成像仪增强版 (ETM ) 和陆地成像仪 (OLI) 数据。这些地图记录了北极和北方森林生态系统中 PFTs 分布的广泛变化,例如由于火灾等干扰的加剧和气候驱动的植被动态而导致的苔原灌木扩展。
项目名称北极-北方脆弱性实验
北极-北方脆弱性实验(ABoVE)是美国国家航空航天局(NASA)陆地生态计划的一项实地活动,从 2015 年开始在阿拉斯加和加拿大西部进行,为期 8 至 10 年。ABoVE 的研究将基于实地的过程级研究与机载和卫星传感器获得的地理空间数据产品联系起来,为提高分析和建模能力奠定了基础,这些能力是了解和预测北极和北方地区生态系统对气候变化的反应及其对社会的影响所必需的。
摘要
本数据集包含阿拉斯加和育空地区北极和北方地区按植物功能类型(PFT)划分的模型顶盖估计数据文件。从 1985 年到 2020 年,以 5 年为间隔列出了单个年份的估算值。此外,还包括均方根误差 (RMSE) 和来源年份,表示顶层覆盖图中的像素是在哪一年绘制的。植物功能类型包括针叶树、阔叶树、落叶灌木、常绿灌木、禾本科植物、草本植物和轻型大型裸子植物。估算值是通过两个随机梯度增强模型的组合得出的,这两个模型使用了环境协变量和光谱协变量。环境协变量代表地形、气候、永久冻土、水文和物候梯度,光谱协变量基于 1984-2020 年间收集的陆地卫星专题成像仪 (TM)、增强型专题成像仪增强版 (ETM ) 和陆地成像仪 (OLI) 数据。这些地图记录了由于火灾等干扰的加剧和气候驱动的植被动态变化,北极和北方森林生态系统中 PFTs 分布发生的广泛变化,如苔原灌木扩展。 这是该数据集的 1.1 版。该版本包含 36 个文件的更新。更多详情可参见第 8 节。数据集修订。
本数据集中包含 280 个数据文件。其中 168 个文件为云优化 GeoTIFF (*.tif) 格式,56 个彩色地图 (*.clr) 文件为默认符号化文件,可在 ArcGIS 软件中与顶层覆盖图一起使用,56 个 dBASE (*.dbf) 文件包含光栅属性表,特别是频率分布表(每个值的像素数),可在 ArcGIS 软件中与顶层覆盖图相关联。
空间覆盖范围:美国阿拉斯加和加拿大育空地区
上图 参考地点
域:核心
州/地区:阿拉斯加和育空地区
网格单元:Bh000v002, Bh003v002, Bh004v002, Bh005v002, Bh006v002, Bh007v002, Bh008v002, Bh009v002, Bh003v001, Bh004v001, Bh005v001、Bh006v001、Bh007v001、Bh008v001、Bh001v002、Bh002v002、Bh000v003、Bh001v003、Bh002v003、Bh006v003、Bh007v003、Bh008v003、Bh009v003、Bh003v003、Bh004v003、Bh005v003、Bh001v004、Bh002v004、Bh003v004、Bh004v004、Bh005v004、Bh006v004、Bh007v004、Bh008v004, Bh009v004, Bh010v004, Bh011v004, Bh000v005, Bh001v005, Bh002v005, Bh003v005, Bh004v005, Bh005v005, Bh006v005、Bh007v005, Bh008v005, Bh009v005, Bh010v005, Bh011v005, Bh000v006, Bh001v006, Bh002v006, Bh003v006, Bh004v006, Bh005v006、Bh006v006、Bh007v006、Bh008v006、Bh009v006、Bh010v006、Bh000v007、Bh001v007、Bh002v007、Bh003v007、Bh004v007、Bh005v007、Bh006v007、Bh007v007、Bh008v007、Bh009v007、Bh010v007、Bh006v008、Bh007v008、Bh008v008、Bh009v008、Bh010v008、Bh006v009、Bh007v009,Bh008v009,Bh009v009,Bh010v009,Bh006v010,Bh007v010,Bh008v010,Bh003v000,Bh004v000,Bh005v000,Bh006v000,Bh007v000
空间分辨率:30 m
时间覆盖范围1985 年至 2020 年
时间分辨率1 年
研究区域:纬度和经度以十进制度表示。
Site | Westernmost Longitude | Easternmost Longitude | Northernmost Latitude | Southernmost Latitude |
---|---|---|---|---|
Alaska and Canada | -169.50 | -128.50 | 71.80 | 55.50 |
该数据集中包含 280 个数据文件。168 个云优化 GeoTIFF(*.tif)格式文件,包括三类数据:顶覆图、均方根误差 (RMSE) 图和源年图。56 个彩色地图 (*.clr) 文件,作为 ArcGIS 软件与顶层覆盖图一起使用的默认符号化;56 个 dBASE (*.dbf) 文件,包含光栅属性表,特别是频率分布表(每个值的像素数),可与 ArcGIS 软件中的顶层覆盖图相关联。
文件命名为 ABoVE_PFT_File_Type_PFT_Name_Year.tif(例如 ABoVE_PFT_Top_Cover_DeciduousShrub_2020.tif),其中:
文件类型为 Top_Cover、RMSE 或 SourceYear PFT_Name 表示 PFT(植物功能类型)的类型 年份表示估算的标称年份,但源年份栅格中的值可能表示特定像素的数据来自不同年份。估算值来自特定年份的光谱数据,而不是 5 年期的数据。
应用与推导
该数据集提供了阿拉斯加北部和中部以及加拿大西北部七种植物功能类型(PFTs)的顶覆率(TC,%)的 35 年时间序列(1985-2020 年,5 年节奏)。由于火灾等干扰的加剧以及冻原灌木扩展等气候驱动的植被动态变化,北极和北方森林生态系统中的植物功能类型的分布正在发生广泛的变化。
要了解这些变化如何影响北方和冻原生态系统,有必要首先量化多年来多种 PFT 的分布变化。虽然大多数地貌斑块都是 PFT 的混合体,但之前的中等分辨率(30 米)遥感分析绘制的植被分布图和变化图都是基于主要 PFT 的土地覆被类别;或者是一种或几种 PFT 的连续分布图,但都是在一个时间点上绘制的。该数据集绘制了七个 PFTs 和多个时间步骤的顶部覆盖图(植物丰度的连续度量)。PFTs包括研究区域内的所有维管植物(针叶树、阔叶树、落叶灌木、常绿灌木、禾本科植物和草本植物),以及对驯鹿管理具有重要意义的非维管类植物--轻型大型裸子植物。这些类别按生长形态和叶片习性分开,以优化光学遥感的可探测性,并描述与植被动态和野生动物栖息地有关的生态学重要区别。
这些地图使观测和实验研究中观察到或模拟的 PFT 与观察到的丰度随时间的变化有了更直接的联系。更重要的是,土地管理者可以通过了解浏览可用性的变化、动物栖息地的变化、火灾燃料的变化或对人类生存具有重要意义的物种的转移,更好地评估当前资源和规划未来条件。此外,单个 PFT 的定量连续覆盖图改进了传统的分类植被图,后者在时间变化检测方面存在局限性,因为许多植被变化可能发生在特定地图类别的变化范围内,而不是从一个类别过渡到另一个类别。
质量评估
在建模前对响应的空间自相关性进行了评估。在模型优化和评估过程中,采用了空间阻断交叉验证方法(Roberts 等人,2017 年)来减轻空间自相关性带来的偏差。根据独立的空间阻断测试褶皱中的预测结果评估模型性能。为进一步了解误差,计算了观测和预测覆盖值的平均绝对误差(MAE)、均方根误差(RMSE)、偏差和 R²。还评估了存在/不存在预测的准确性和受体运行特征曲线下面积(AUC)。
根据测试褶皱中的预测结果,对预测覆盖率的每个 1%分段的 RMSE 进行了总结。直接使用缺失分区(0% 覆盖率)的值,并在从 1%到最高预测覆盖率的值范围内拟合一条平滑的黄土曲线。地图预测值高于测试褶皱中的最高预测覆盖率的情况非常罕见,但也有可能发生,因此 RMSE 估计值从最高观测值开始填充,以涵盖从最高覆盖率 100%到最高覆盖率 100%的整个范围。
数据采集、材料和方法
时间序列 PFT 模型的训练和预测使用了一套环境和光谱协变量。环境协变量代表整个研究区域的地形、气候、永久冻土、水文和物候梯度,对所有模型都是恒定的。光谱协变量基于 1984 年至 2020 年收集的 Landsat TM、ETM 和 OLI 数据,并沿用了 ABoVE 土地覆被产品的生成方法(Wang 等,2019 年)。
对基于实地的植被覆盖数据进行了汇编和归一化处理。这些数据是在 1994 年至 2019 年期间从阿拉斯加和育空地区的各种来源收集的,包括资源管理机构、学术研究人员、行业和顾问。数据包括从地面和/或空中平台(如直升机)收集的目测和定量植被覆盖度估计值。此外,还包括从分类无人机系统 (UAS) 图像中得出的部分植被覆盖率。
建模前对响应变量的空间自相关性进行了评估,并采用了空间阻断交叉验证方法(Roberts 等人,2017 年)。根据训练数据和空间预测因子,应用两种随机梯度提升模型绘制 PFT 分布图。二元概率模型用于绘制 PFT 分布图,回归模型用于绘制 PFT 丰度图。将这两个模型结合起来,最终预测出 PFT 的覆盖率。
代码
代码语言:javascript复制!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
import pandas as pd
import leafmap
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="t")
df
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
short_name="AK_Yukon_PFT_TopCover_2032",
cloud_hosted=True,
bounding_box=(-176.1, 51.0, -122.5, 75.91),
temporal=("1985-01-01", "2020-12-31"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)
gdf.explore()
#leafmap.nasa_data_download(results[:5], out_dir="data")
引用
Macander, M.J., and P.R. Nelson. 2022. ABoVE: Modeled Top Cover by Plant Functional Type over Alaska and Yukon, 1985-2020. ORNL DAAC, Oak Ridge, Tennessee, USA. ABoVE: Modeled Top Cover by Plant Functional Type over Alaska and Yukon, 1985-2020, https://doi.org/10.3334/ORNLDAAC/2032
网址推荐
0代码在线构建地图应用
https://invite.mapmost.com/#/login?source_inviter=nClSZANO
机器学习
https://www.cbedai.net/xg