Transformers 4.37 中文文档(二十六)

2024-06-26 15:41:40 浏览数 (2)

原文:huggingface.co/docs/transformers

BORT

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/bort

该模型目前处于维护模式,我们不接受任何修改其代码的新 PR。

如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.30.0。您可以通过运行以下命令来执行:pip install -U transformers==4.30.0

概述

BORT 模型是由 Adrian de Wynter 和 Daniel J. Perry 在为 BERT 提取最佳子架构中提出的。这是 BERT 的一组最佳架构参数,作者称之为“Bort”。

论文摘要如下:

我们从 Devlin 等人(2018)的 BERT 架构中提取了一组最佳的架构参数,通过应用神经架构搜索算法的最新突破。这个最佳子集,我们称之为“Bort”,明显更小,有效(即不计算嵌入层)大小为原始 BERT-large 架构的 5.5%,以及净尺寸的 16%。Bort 还能在 288 个 GPU 小时内进行预训练,这相当于预训练最高性能的 BERT 参数化架构变体 RoBERTa-large(Liu 等人,2019)所需时间的 1.2%,以及在相同硬件上训练 BERT-large 所需的 GPU 小时的世界纪录的约 33%。它在 CPU 上也快了 7.9 倍,比架构的其他压缩变体以及一些非压缩变体表现更好:在多个公共自然语言理解(NLU)基准测试中,相对于 BERT-large,它获得了 0.3%至 31%的性能改进,绝对值。

该模型由stefan-it贡献。原始代码可以在这里找到。

使用提示

  • BORT 的模型架构基于 BERT,参考 BERT 的文档页面获取模型的 API 参考以及使用示例。
  • BORT 使用 RoBERTa 分词器而不是 BERT 分词器,参考 RoBERTa 的文档页面获取分词器的 API 参考以及使用示例。
  • BORT 需要一种特定的微调算法,称为Agora,遗憾的是目前尚未开源。如果有人尝试实现该算法以使 BORT 微调工作,对社区将非常有用。

ByT5

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/byt5

概述

ByT5 模型由 Linting Xue、Aditya Barua、Noah Constant、Rami Al-Rfou、Sharan Narang、Mihir Kale、Adam Roberts、Colin Raffel 在ByT5: Towards a token-free future with pre-trained byte-to-byte models中提出。

论文摘要如下:

大多数广泛使用的预训练语言模型操作的是与单词或子词单元对应的标记序列。将文本编码为标记序列需要一个分词器,通常作为模型的独立工件创建。直接在原始文本(字节或字符)上运行的无标记模型具有许多优点:它们可以直接处理任何语言的文本,对噪声更加稳健,并通过消除复杂和易出错的文本预处理流程来最小化技术债务。由于字节或字符序列比标记序列更长,过去关于无标记模型的工作通常引入了新的模型架构,旨在分摊直接在原始文本上运行的成本。在本文中,我们展示了标准 Transformer 架构可以在最小修改的情况下用于处理字节序列。我们仔细研究了参数数量、训练 FLOPs 和推理速度方面的权衡,并表明字节级模型与其标记级对应物具有竞争力。我们还证明了字节级模型对噪声更加稳健,并在对拼写和发音敏感的任务上表现更好。作为我们的贡献的一部分,我们发布了一组基于 T5 架构的新的预训练字节级 Transformer 模型,以及我们实验中使用的所有代码和数据。

这个模型是由patrickvonplaten贡献的。原始代码可以在这里找到。

ByT5 的架构基于 T5v1.1 模型,请参考 T5v1.1 的文档页面获取 API 参考。它们只在输入如何为模型准备方面有所不同,请参见下面的代码示例。

由于 ByT5 是无监督预训练的,单任务微调时使用任务前缀并没有真正的优势。如果进行多任务微调,则应使用前缀。

用法示例

ByT5 使用原始的 UTF-8 字节,因此可以在没有分词器的情况下使用:

代码语言:javascript复制
>>> from transformers import T5ForConditionalGeneration
>>> import torch

>>> model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")

>>> num_special_tokens = 3
>>> # Model has 3 special tokens which take up the input ids 0,1,2 of ByT5.
>>> # => Need to shift utf-8 character encodings by 3 before passing ids to model.

>>> input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))])   num_special_tokens

>>> labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))])   num_special_tokens

>>> loss = model(input_ids, labels=labels).loss
>>> loss.item()
2.66

然而,对于批量推理和训练,建议使用分词器:

代码语言:javascript复制
>>> from transformers import T5ForConditionalGeneration, AutoTokenizer

>>> model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/byt5-small")

>>> model_inputs = tokenizer(
...     ["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt"
... )
>>> labels_dict = tokenizer(
...     ["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt"
... )
>>> labels = labels_dict.input_ids

>>> loss = model(**model_inputs, labels=labels).loss
>>> loss.item()
17.9

与 T5 类似,ByT5 是在 span-mask 去噪任务上进行训练的。然而,由于该模型直接在字符上工作,预训练任务有些不同。让我们破坏输入句子"The dog chases a ball in the park."的一些字符,并要求 ByT5 为我们预测它们。

代码语言:javascript复制
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/byt5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-base")

>>> input_ids_prompt = "The dog chases a ball in the park."
>>> input_ids = tokenizer(input_ids_prompt).input_ids

>>> # Note that we cannot add "{extra_id_...}" to the string directly
>>> # as the Byte tokenizer would incorrectly merge the tokens
>>> # For ByT5, we need to work directly on the character level
>>> # Contrary to T5, ByT5 does not use sentinel tokens for masking, but instead
>>> # uses final utf character ids.
>>> # UTF-8 is represented by 8 bits and ByT5 has 3 special tokens.
>>> # => There are 2**8 2 = 259 input ids and mask tokens count down from index 258.
>>> # => mask to "The dog [258]a ball [257]park."

>>> input_ids = torch.tensor([input_ids[:8]   [258]   input_ids[14:21]   [257]   input_ids[28:]])
>>> input_ids
tensor([[ 87, 107, 104,  35, 103, 114, 106,  35, 258,  35, 100,  35, 101, 100, 111, 111, 257,  35, 115, 100, 117, 110,  49,   1]])

>>> # ByT5 produces only one char at a time so we need to produce many more output characters here -> set `max_length=100`.
>>> output_ids = model.generate(input_ids, max_length=100)[0].tolist()
>>> output_ids
[0, 258, 108, 118,  35, 119, 107, 104,  35, 114, 113, 104,  35, 122, 107, 114,  35, 103, 114, 104, 118, 257,  35, 108, 113,  35, 119, 107, 104,  35, 103, 108, 118, 102, 114, 256, 108, 113,  35, 119, 107, 104, 35, 115, 100, 117, 110,  49,  35,  87, 107, 104,  35, 103, 114, 106, 35, 108, 118,  35, 119, 107, 104,  35, 114, 113, 104,  35, 122, 107, 114,  35, 103, 114, 104, 118,  35, 100,  35, 101, 100, 111, 111,  35, 108, 113, 255,  35, 108, 113,  35, 119, 107, 104,  35, 115, 100, 117, 110,  49]

>>> # ^- Note how 258 descends to 257, 256, 255

>>> # Now we need to split on the sentinel tokens, let's write a short loop for this
>>> output_ids_list = []
>>> start_token = 0
>>> sentinel_token = 258
>>> while sentinel_token in output_ids:
...     split_idx = output_ids.index(sentinel_token)
...     output_ids_list.append(output_ids[start_token:split_idx])
...     start_token = split_idx
...     sentinel_token -= 1

>>> output_ids_list.append(output_ids[start_token:])
>>> output_string = tokenizer.batch_decode(output_ids_list)
>>> output_string
['<pad>', 'is the one who does', ' in the disco', 'in the park. The dog is the one who does a ball in', ' in the park.']

ByT5Tokenizer

class transformers.ByT5Tokenizer

<来源>

代码语言:javascript复制
( eos_token = '</s>' unk_token = '<unk>' pad_token = '<pad>' extra_ids = 125 additional_special_tokens = None **kwargs )

参数

  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。 当构建使用特殊标记的序列时,这不是用于序列结束的标记。使用的标记是sep_token
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中没有的标记无法转换为 ID,而是设置为此标记。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • extra_ids (int, 可选, 默认为 125) — 添加一定数量的额外 ID,添加到词汇表末尾以用作哨兵。这些 token 可以作为“id{%d}>”访问,其中”{%d}”是 0 到 extra_ids-1 之间的数字。额外 token 从词汇表末尾向开始索引(“<extra_id_0>”是词汇表中的最后一个 token,就像 ByT5 预处理中看到的那样,请参见此处)。</extra_id_0>
  • additional_special_tokens (List[str], 可选) — 分词器使用的额外特殊 token。

构建一个 ByT5 分词器。ByT5 简单地使用原始字节 utf-8 编码。

此分词器继承自 PreTrainedTokenizer,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

代码语言:javascript复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊 token 的 ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回

List[int]

带有适当特殊 token 的 输入 ID 列表。

通过连接和添加特殊 token,从序列或序列对构建用于序列分类任务的模型输入。序列的格式如下:

  • 单个序列:X </s>
  • 序列对:A </s> B </s>
convert_tokens_to_string

<来源>

代码语言:javascript复制
( tokens )

将 token 序列(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

<来源>

代码语言:javascript复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回

List[int]

零的列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。ByT5 不使用 token 类型 id,因此返回一个零的列表。

get_special_tokens_mask

<来源>

代码语言:javascript复制
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。
  • already_has_special_tokens (bool, 可选, 默认为 False) — 标记列表是否已经为模型格式化了特殊 token。

返回

List[int]

一个整数列表,范围为 [0, 1]:特殊 token 为 1,序列 token 为 0。

从没有添加特殊 token 的 token 列表中检索序列 id。在使用分词器的 prepare_for_model 方法添加特殊 token 时调用此方法。

有关所有详细信息,请参阅 ByT5Tokenizer。

CamemBERT

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/camembert

概述

CamemBERT 模型由 Louis Martin、Benjamin Muller、Pedro Javier Ortiz Suárez、Yoann Dupont、Laurent Romary、Éric Villemonte de la Clergerie、Djamé Seddah 和 Benoît Sagot 在 CamemBERT: a Tasty French Language Model 中提出。它基于 Facebook 在 2019 年发布的 RoBERTa 模型。这是一个在 138GB 法语文本上训练的模型。

该论文的摘要如下:

预训练语言模型现在在自然语言处理中无处不在。尽管它们取得了成功,但大多数可用模型要么是在英语数据上训练的,要么是在多种语言数据的串联上训练的。这使得除了英语之外的所有语言对这些模型的实际使用非常有限。为了解决这个问题,我们发布了 CamemBERT,这是 Bi-directional Encoders for Transformers(BERT)的法语版本。我们通过在多个下游任务中比较 CamemBERT 与多语言模型的性能,即词性标注、依存句法分析、命名实体识别和自然语言推理,来衡量 CamemBERT 的性能。CamemBERT 在大多数考虑的任务中改进了现有技术水平。我们发布了 CamemBERT 的预训练模型,希望促进法语自然语言处理的研究和下游应用。

该模型由camembert贡献。原始代码可在此处找到。

该实现与 RoBERTa 相同。有关用法示例以及与输入和输出相关的信息,请参阅 RoBERTa 的文档。

资源

  • 文本分类任务指南
  • 标记分类任务指南
  • 问答任务指南
  • 因果语言建模任务指南
  • 遮蔽语言建模任务指南
  • 多项选择任务指南

CamembertConfig

class transformers.CamembertConfig

<来源>

代码语言:javascript复制
( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )

参数

  • vocab_size (int可选,默认为 30522) — BERT 模型的词汇大小。定义了在调用 CamembertModel 或 TFCamembertModel 时可以由inputs_ids表示的不同标记数量。
  • hidden_size (int可选,默认为 768) — 编码器层和池化器层的维度。
  • num_hidden_layers (int可选,默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int可选,默认为 12) — Transformer 编码器中每个注意力层的注意力头数量。
  • intermediate_size (int可选,默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (strCallable可选,默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float可选,默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。
  • attention_probs_dropout_prob (float可选,默认为 0.1) — 注意力概率的丢弃比率。
  • max_position_embeddings (int可选,默认为 512) — 该模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512、1024 或 2048)。
  • type_vocab_sizeint可选,默认为 2)— 在调用 CamembertModel 或 TFCamembertModel 时传递的token_type_ids的词汇大小。
  • initializer_rangefloat可选,默认为 0.02)— 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_epsfloat可选,默认为 1e-12)— 层归一化层使用的 epsilon。
  • position_embedding_typestr可选,默认为"absolute")— 位置嵌入的类型。选择"absolute""relative_key""relative_key_query"中的一个。对于位置嵌入,请使用"absolute"。有关"relative_key"的更多信息,请参阅Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"的更多信息,请参阅Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)中的Method 4
  • is_decoderbool可选,默认为False)— 模型是否用作解码器。如果为False,则模型用作编码器。
  • use_cachebool可选,默认为True)— 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True时相关。
  • classifier_dropoutfloat可选)— 分类头的丢失比率。

这是用于存储 CamembertModel 或 TFCamembertModel 配置的配置类。它用于根据指定的参数实例化 Camembert 模型,定义模型架构。使用默认值实例化配置将产生类似于 Camembert camembert-base架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

代码语言:javascript复制
>>> from transformers import CamembertConfig, CamembertModel

>>> # Initializing a Camembert camembert-base style configuration
>>> configuration = CamembertConfig()

>>> # Initializing a model (with random weights) from the camembert-base style configuration
>>> model = CamembertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

CamembertTokenizer

class transformers.CamembertTokenizer

<来源>

代码语言:javascript复制
( vocab_file bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' additional_special_tokens = ['<s>NOTUSED', '</s>NOTUSED', '<unk>NOTUSED'] sp_model_kwargs: Optional = None **kwargs )

参数

  • vocab_filestr)— 包含实例化分词器所需词汇的SentencePiece文件(通常具有*.spm*扩展名)。
  • bos_tokenstr可选,默认为"<s>")— 在预训练期间使用的序列开头标记。可用作序列分类器标记。 在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是cls_token
  • eos_tokenstr可选,默认为"</s>")— 序列结束标记。 在使用特殊标记构建序列时,这不是用于序列结尾的标记。使用的标记是sep_token
  • sep_tokenstr可选,默认为"</s>")— 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于问题回答的文本和问题。它还用作使用特殊标记构建的序列的最后一个标记。
  • cls_tokenstr可选,默认为"<s>")— 在进行序列分类(对整个序列进行分类而不是每个标记的分类)时使用的分类器标记。构建带有特殊标记的序列时是序列的第一个标记。
  • unk_tokenstr可选,默认为"<unk>")— 未知标记。词汇表中没有的标记无法转换为 ID,而是设置为此标记。
  • pad_tokenstr可选,默认为"<pad>")— 用于填充的标记,例如在批处理不同长度的序列时使用。
  • mask_tokenstr可选,默认为"<mask>")— 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • additional_special_tokensList[str]可选,默认为['<s>NOTUSED', '</s>NOTUSED', '<unk>NOTUSED'])— tokenizer 使用的其他特殊标记。
  • sp_model_kwargsdict可选)— 将传递给SentencePieceProcessor.__init__()方法。SentencePiece 的 Python 包装器可用于设置:
    • enable_sampling:启用子词正则化。
    • nbest_size:unigram 的采样参数。对于 BPE-Dropout 无效。
      • nbest_size = {0,1}:不执行采样。
      • nbest_size > 1:从 nbest_size 结果中进行采样。
      • nbest_size < 0:假设 nbest_size 为无限,并使用前向过滤和后向采样算法从所有假设(格)中进行采样。
    • alpha:用于 unigram 采样的平滑参数,以及用于 BPE-dropout 合并操作的丢弃概率。
  • sp_modelSentencePieceProcessor)— 用于每次转换(字符串、标记和 ID)的SentencePiece处理器。

改编自 RobertaTokenizer 和 XLNetTokenizer。构建一个 CamemBERT tokenizer。基于SentencePiece。

此 tokenizer 继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

代码语言:javascript复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])— 将添加特殊标记的 ID 列表。
  • token_ids_1List[int]可选)— 序列对的可选第二个 ID 列表。

返回

List[int]

带有适当特殊标记的 input IDs 列表。

通过连接和添加特殊标记从序列或序列对构建模型输入,用于序列分类任务。CamemBERT 序列的格式如下:

  • 单个序列:<s> X </s>
  • 序列对:<s> A </s></s> B </s>
get_special_tokens_mask

<来源>

代码语言:javascript复制
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])— ID 列表。
  • token_ids_1List[int]可选)— 序列对的可选第二个 ID 列表。
  • already_has_special_tokensbool可选,默认为False)— 标记列表是否已经使用特殊标记格式化为模型。

返回

List[int]

一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列 id。在使用 tokenizer 的prepare_for_model方法添加特殊标记时调用此方法。

create_token_type_ids_from_sequences

<来源>

代码语言:javascript复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回

List[int]

零值列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。与 RoBERTa 一样,CamemBERT 不使用标记类型 ID,因此返回一个零值列表。

save_vocabulary

<来源>

代码语言:javascript复制
( save_directory: str filename_prefix: Optional = None )

卡芒贝尔快速分词器

class transformers.CamembertTokenizerFast

<来源>

代码语言:javascript复制
( vocab_file = None tokenizer_file = None bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' additional_special_tokens = ['<s>NOTUSED', '</s>NOTUSED', '<unk>NOTUSED'] **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常具有 .spm 扩展名),其中包含实例化分词器所需的词汇表。
  • bos_token (str, 可选, 默认为 "<s>") — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。 在构建使用特殊标记的序列时,这不是用于序列开始的标记。使用的标记是 cls_token
  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。 在构建使用特殊标记的序列时,这不是用于序列结束的标记。使用的标记是 sep_token
  • sep_token (str, 可选, 默认为 "</s>") — 分隔符标记,用于从多个序列构建序列,例如用于序列分类的两个序列或用于文本和问题的问题回答。也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "<s>") — 分类器标记,用于进行序列分类(对整个序列进行分类,而不是每个标记的分类)。构建带有特殊标记时,它是序列的第一个标记。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • mask_token (str, 可选, 默认为 "<mask>") — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • additional_special_tokens (List[str], 可选, 默认为 ["<s>NOTUSED", "</s>NOTUSED"]) — 分词器使用的额外特殊标记。

构建一个“快速”卡芒贝尔分词器(由 HuggingFace 的 tokenizers 库支持)。改编自 RobertaTokenizer 和 XLNetTokenizer。基于 BPE。

该分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

代码语言:javascript复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回

List[int]

带有适当特殊标记的 input IDs 列表。

从一个序列或一对序列构建用于序列分类任务的模型输入,方法是连接并添加特殊标记。一个 CamemBERT 序列具有以下格式:

  • 单个序列:<s> X </s>
  • 一对序列:<s> A </s></s> B </s>
create_token_type_ids_from_sequences

<来源>

代码语言:javascript复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int]可选) — 用于序列对的可选第二个 ID 列表。

返回

List[int]

零的列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。像 RoBERTa 一样,CamemBERT 不使用标记类型 ID,因此返回一个零的列表。

PytorchHide Pytorch 内容

CamembertModel

class transformers.CamembertModel

<来源>

代码语言:javascript复制
( config add_pooling_layer = True )

参数

  • config (CamembertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 CamemBERT 模型变压器输出原始隐藏状态,没有特定的头部。

该模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

该模型可以作为编码器(仅具有自注意力)或解码器行为,此时在自注意力层之间添加了一层交叉注意力,遵循注意力就是你所需要的架构,作者是 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser 和 Illia Polosukhin。

为了使模型行为像解码器,需要使用配置中的is_decoder参数设置为True进行初始化。要在 Seq2Seq 模型中使用,模型需要使用is_decoder参数和add_cross_attention都设置为True进行初始化;然后期望一个encoder_hidden_states作为前向传递的输入。

… _注意力就是你所需要的arxiv.org/abs/1706.03762

forward

<来源>

代码语言:javascript复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。 什么是输入 IDs?
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
    • 对于未被掩码的标记为 1,
    • 对于被masked掩盖的标记为 0。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被“masked”掩盖,
    • 0 表示头部被masked掩盖。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值在[0, 1]中选择:
    • 对于未被“masked”掩盖的标记,
    • 对于被masked掩盖的标记。
  • past_key_values(长度为config.n_layerstuple(tuple(torch.FloatTensor)),每个元组包含形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的 4 个张量)— 包含注意力块的预计算键和值隐藏状态。可用于加速解码。 如果使用了past_key_values,用户可以选择仅输入最后的decoder_input_ids(这些没有将其过去的键值状态提供给此模型)的形状为(batch_size, 1)的张量,而不是所有形状为(batch_size, sequence_length)decoder_input_ids
  • use_cachebool可选)— 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含各种元素,具体取决于配置(CamembertConfig)和输入。

  • last_hidden_state (形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor`) — 模型最后一层的隐藏状态序列。
  • pooler_output (形状为(batch_size, hidden_size)torch.FloatTensor`) — 经过用于辅助预训练任务的层进一步处理后,序列中第一个标记(分类标记)的最后一层隐藏状态。例如,对于 BERT 系列模型,这返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是在预训练期间从下一个句子预测(分类)目标中训练的。
  • hidden_states (tuple(torch.FloatTensor), 可选的, 当传递output_hidden_states=True或者当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出的一个 每层的输出的一个)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选的, 当传递output_attentions=True或者当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(torch.FloatTensor), 可选的, 当传递output_attentions=Trueconfig.add_cross_attention=True或者当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选的, 当传递use_cache=True或者当config.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。 包含预先计算的隐藏状态(自注意力块中的键和值,以及在交叉注意力块中如果config.is_encoder_decoder=True的情况下)可以用来加速顺序解码(参见past_key_values输入)。

CamembertModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, CamembertModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> model = CamembertModel.from_pretrained("camembert-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

CamembertForCausalLM

class transformers.CamembertForCausalLM

<来源>

代码语言:javascript复制
( config )

参数

  • config (CamembertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

带有顶部语言建模头部的 CamemBERT 模型,用于 CLM 微调。

此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None past_key_values: Tuple = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)optional) — 遮蔽填充标记索引上的注意力。遮罩值选择在[0, 1]之间:
    • 1 表示未被masked的标记,
    • 0 表示被masked的标记。

    什么是注意力遮罩?

  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块中的选定头部失效的遮罩。遮罩值选择在[0, 1]之间:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • encoder_hidden_states (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)optional) — 遮蔽编码器输入的填充标记索引上的注意力。如果模型配置为解码器,则在交叉注意力中使用此遮罩。遮罩值选择在[0, 1]之间:
    • 1 表示未被masked的标记,
    • 对于被masked的标记为 0。
  • labels(形状为(batch_size, sequence_length)torch.LongTensor可选)— 用于计算从左到右的语言建模损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size](参见input_ids文档字符串)中。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。
  • past_key_values(长度为config.n_layerstuple(tuple(torch.FloatTensor)),每个元组包含形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的 4 个张量)— 包含注意力块的预先计算的键和值隐藏状态。可用于加速解码。 如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • use_cachebool可选)— 如果设置为True,将返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(CamembertConfig)和输入的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 语言建模损失(用于下一个标记预测)。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型具有嵌入层,则为嵌入输出的输出 每层的输出)。 每层模型的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstorch.FloatTensor元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True时相关。 包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。

CamembertForCausalLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, CamembertForCausalLM, AutoConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> config = AutoConfig.from_pretrained("camembert-base")
>>> config.is_decoder = True
>>> model = CamembertForCausalLM.from_pretrained("camembert-base", config=config)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

CamembertForMaskedLM

class transformers.CamembertForMaskedLM

<来源>

代码语言:javascript复制
( config )

参数

  • config(CamembertConfig)-模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有语言建模头的 CamemBERT 模型。

这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)-词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)-避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]范围内:
    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)-段标记索引,指示输入的第一部分和第二部分。索引选定在[0, 1]范围内:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)-每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)-用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]范围内:
    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]内的标记。
  • kwargs (Dict[str, any], 可选,默认为*{}*) — 用于隐藏已弃用的旧参数。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(CamembertConfig)和输入的不同元素。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供labels时返回) — 掩码语言建模(MLM)损失。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的输出 每层的输出)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

CamembertForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, CamembertForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> model = CamembertForMaskedLM.from_pretrained("camembert-base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.1

CamembertForSequenceClassification

class transformers.CamembertForSequenceClassification

<来源>

代码语言:javascript复制
( config )

参数

  • config (CamembertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

CamemBERT 模型变压器,顶部带有一个序列分类/回归头(池化输出的顶部线性层),例如用于 GLUE 任务。

这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

代码语言:javascript复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示标记是 未屏蔽
    • 0 表示标记是 屏蔽

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:
    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。 什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部是 未屏蔽
    • 0 表示头部是 屏蔽
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权来将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回值

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor的元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(CamembertConfig)和输入的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 分类(如果 config.num_labels==1 则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor)— 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— torch.FloatTensor的元组(一个用于嵌入的输出,如果模型有嵌入层, 一个用于每个层的输出)的形状为(batch_size, sequence_length, hidden_size)。 模型在每个层的输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— torch.FloatTensor的元组(每个层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

CamembertForSequenceClassification 的前向方法覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

单标签分类示例:

代码语言:javascript复制
>>> import torch
>>> from transformers import AutoTokenizer, CamembertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = CamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'optimism'

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = CamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.08

多标签分类示例:

代码语言:javascript复制
>>> import torch
>>> from transformers import AutoTokenizer, CamembertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = CamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = CamembertForSequenceClassification.from_pretrained(
...     "cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

CamembertForMultipleChoice

class transformers.CamembertForMultipleChoice

<来源>

代码语言:javascript复制
( config )

参数

  • config(CamembertConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在 CamemBERT 模型顶部带有多选分类头(池化输出顶部的线性层和 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript复制
( input_ids: Optional = None token_type_ids: Optional = None attention_mask: Optional = None labels: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
    • 1 表示未被掩盖的标记,
    • 0 表示被掩盖的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于一个句子 A标记,
    • 1 对应于一个句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被掩盖
    • 0 表示头部被掩盖
  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]范围内,其中num_choices是输入张量第二维的大小。(参见上面的input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(CamembertConfig)和输入。

  • loss(形状为*(1,)*的torch.FloatTensor可选,当提供labels时返回)— 分类损失。
  • logits(形状为(batch_size, num_choices)torch.FloatTensor)— num_choices是输入张量的第二维度。(参见上面的input_ids)。 分类得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的输出 每个层的输出)。 模型在每个层的输出的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个层一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

CamembertForMultipleChoice 的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, CamembertForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> model = CamembertForMultipleChoice.from_pretrained("camembert-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

CamembertForTokenClassification

class transformers.CamembertForTokenClassification

<来源>

代码语言:javascript复制
( config )

参数

  • config(CamembertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

CamemBERT 模型,顶部带有一个标记分类头(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。

此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

<来源>

代码语言:javascript复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。 输入 ID 是什么?
  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充令牌索引上执行注意力的掩码。掩码值选择在 [0, 1]
    • 对于未被“掩码”的令牌,为 1,
    • 对于被“掩码”的令牌,为 0。

    注意力掩码是什么?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段令牌索引,用于指示输入的第一部分和第二部分。索引选择在 [0, 1]
    • 0 对应于 句子 A 令牌,
    • 1 对应于 句子 B 令牌。

    令牌类型 ID 是什么?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列令牌在位置嵌入中的位置索引。选择范围为 [0, config.max_position_embeddings - 1]。 位置 ID 是什么?
  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在 [0, 1]
    • 1 表示头部未被“掩码”,
    • 0 表示头部被“掩码”。
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望更多地控制如何将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算令牌分类损失的标签。索引应在 [0, ..., config.num_labels - 1]

返回

transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包含各种元素,具体取决于配置(CamembertConfig)和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。
  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(用于嵌入层的输出,如果模型有嵌入层,则为一个 每个层的输出)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

CamembertForTokenClassification 的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, CamembertForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
>>> model = CamembertForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01

CamembertForQuestionAnswering

class transformers.CamembertForQuestionAnswering

<来源>

代码语言:javascript复制
( config )

参数

  • config(CamembertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

CamemBERT 模型在顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的线性层上计算span start logitsspan end logits

该模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。

forward

<来源>

代码语言:javascript复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是 input IDs?
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
    • 1 用于未被masked的标记,
    • 0 用于被masked的标记。

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A的标记,
    • 1 对应于句子 B的标记。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中的选定头部失效的掩码。掩码值选在[0, 1]之间:
    • 1 表示头部未被屏蔽,
    • 0 表示头部被屏蔽。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多细节,请参阅返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多细节,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记跨度起始位置的位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内计算损失。
  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记跨度结束位置的位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内计算损失。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=False或当config.return_dict=False时)包含根据配置(CamembertConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。
  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 跨度起始得分(SoftMax 之前)。
  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 跨度结束得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 模型在每一层输出的隐藏状态的元组,形状为(batch_size, sequence_length, hidden_size)。 模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — 每一层的注意力张量的元组,形状为(batch_size, num_heads, sequence_length, sequence_length)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

CamembertForQuestionAnswering 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, CamembertForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
>>> model = CamembertForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index   1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
' puppet'

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
0.86

TensorFlow 隐藏 TensorFlow 内容

TFCamembertModel

class transformers.TFCamembertModel

<来源>

代码语言:javascript复制
( config *inputs **kwargs )

参数

  • config(CamembertConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 CamemBERT 模型变换器输出原始的隐藏状态,而没有特定的头部。

这个模型继承自 TFPreTrainedModel。查看超类文档以获取库实现的所有模型的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有这种支持,当使用model.fit()等方法时,您应该可以“轻松地”使用 - 只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:

  • 一个只有input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不同的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)- 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()获取详细信息。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)Numpy arraytf.Tensor可选)- 用于避免在填充令牌索引上执行注意力。掩码值选在[0, 1]之间:
    • 1 表示未被masked的令牌,
    • 0 表示被masked的令牌。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy arraytf.Tensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引选在[0, 1]之间:
    • 0 对应于句子 A令牌,
    • 1 对应于句子 B令牌。

    什么是令牌类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy arraytf.Tensor可选)- 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy arraytf.Tensor可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值选在[0, 1]之间:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)- 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。
  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式中该值将始终设置为 True。
  • trainingbool可选,默认为False)- 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)- 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则用于交叉注意力。
  • encoder_attention_mask(形状为(batch_size, sequence_length)tf.Tensor可选)- 用于避免在编码器输入的填充令牌索引上执行注意力。如果模型配置为解码器,则此掩码将用于交叉注意力。掩码值选在[0, 1]之间:
    • 1 表示未被masked的令牌,
    • 0 表示被masked的令牌。
  • past_key_values(长度为config.n_layersTuple[Tuple[tf.Tensor]])- 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • use_cachebool可选,默认为True)- 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。在训练期间设置为False,在生成期间设置为True

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(CamembertConfig)和输入而异的各种元素。

  • last_hidden_state (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
  • pooler_output (tf.Tensor,形状为(batch_size, hidden_size)) — 序列第一个标记(分类标记)的最后一层隐藏状态,进一步由线性层和 Tanh 激活函数处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。 该输出通常不是输入语义内容的良好摘要,通常最好对整个输入序列的隐藏状态进行平均或池化。
  • past_key_values (List[tf.Tensor]optional,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)。 包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • hidden_states (tuple(tf.Tensor)optional,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 一个用于每层的输出)。 模型在每一层的输出隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor)optional,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

TFCamembertModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, TFCamembertModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> model = TFCamembertModel.from_pretrained("camembert-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFCamembertForCasualLM

class transformers.TFCamembertForCausalLM

<来源>

代码语言:javascript复制
( config: CamembertConfig *inputs **kwargs )

参数

  • config(CamembertConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有语言建模头的 CamemBERT 模型,用于 CLM 微调。

该模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型还是一个tf.keras.Model子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。

transformers中的 TensorFlow 模型和层接受两种输入格式:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,当使用model.fit()等方法时,您应该可以“轻松”地使用 - 只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:

  • 一个只有input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不定的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个包含一个或多个与文档字符串中给定输入名称相关联的输入张量的字典:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 指示输入的第一部分和第二部分的段标记索引。索引选在[0, 1]之间:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_idsNumpy 数组tf.Tensor,形状为(batch_size, sequence_length)optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]。 什么是位置 ID?
  • head_maskNumpy 数组tf.Tensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块的选定头部失效的遮罩。选择的遮罩值在[0, 1]中:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • inputs_embeds (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量中的attentions。此参数仅在急切模式下可用,在图模式下将使用配置中的值。
  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量中的hidden_states。此参数仅在急切模式下可用,在图模式下将使用配置中的值。
  • return_dict (booloptional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (booloptional,默认为False) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • encoder_hidden_states (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)optional) — 编码器最后一层的隐藏状态序列的输出。如果模型配置为解码器,则用于交叉注意力。
  • encoder_attention_mask (tf.Tensor,形状为(batch_size, sequence_length)optional) — 遮蔽以避免在编码器输入的填充标记索引上执行注意力。如果模型配置为解码器,则此遮罩将用于交叉注意力。选择的遮罩值在[0, 1]中:
    • 1 表示未被masked的标记,
    • 对于被masked的标记为 0。
  • past_key_values(长度为config.n_layersTuple[Tuple[tf.Tensor]]) — 包含预先计算的注意力块的键和值隐藏状态。可用于加速解码。如果使用了past_key_values,则用户可以选择仅输入最后一个decoder_input_ids(这些输入没有将其过去的键值状态提供给此模型)的形状为(batch_size, 1)而不是所有decoder_input_ids的形状为(batch_size, sequence_length)
  • use_cache (booloptional,默认为True) — 如果设置为True,则将返回past_key_values键值状态,并可用于加速解码(请参阅past_key_values)。在训练期间设置为False,在生成期间设置为True
  • labels (tf.Tensornp.ndarray,形状为(batch_size, sequence_length)optional) — 用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]中。

返回

transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(CamembertConfig)和输入而异的各种元素。

  • loss (tf.Tensor,形状为(n,)optional,当提供labels时返回) — 语言建模损失(用于下一个标记预测)。
  • logits (tf.Tensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 一个用于每层的输出)。 模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • past_key_values (List[tf.Tensor], optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)。 包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(查看past_key_values输入)。

TFCamembertForCausalLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, TFCamembertForCausalLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> model = TFCamembertForCausalLM.from_pretrained("camembert-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFCamembertForMaskedLM

class transformers.TFCamembertForMaskedLM

<来源>

代码语言:javascript复制
( config *inputs **kwargs )

参数

  • config(CamembertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

CamemBERT 模型,顶部带有语言建模头。

该模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量放在第一个位置参数中:

  • 一个只有input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个变长列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)- 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
    • 1 表示未被masked的标记,
    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)- 分段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A的标记,
    • 1 对应于句子 B的标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)- 用于使自注意力模块中的选定头部失效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望更多地控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (bool, optional, 默认为False) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size](请参阅input_ids文档字符串)中。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

返回

transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(CamembertConfig)和输入的各种元素。

  • loss (tf.Tensor of shape (n,), optional, 其中 n 是未屏蔽标签的数量,在提供labels时返回) — 掩码语言建模(MLM)损失。
  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。 自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

TFCamembertForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, TFCamembertForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> model = TFCamembertForMaskedLM.from_pretrained("camembert-base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
代码语言:javascript复制
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(float(outputs.loss), 2)
0.1

TFCamembertForSequenceClassification

class transformers.TFCamembertForSequenceClassification

<来源>

代码语言:javascript复制
( config *inputs **kwargs )

参数

  • config(CamembertConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

CamemBERT 模型变压器,顶部带有序列分类/回归头(汇总输出的线性层),例如用于 GLUE 任务。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用诸如model.fit()之类的方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:

  • 只有一个仅包含input_ids的张量,没有其他内容:model(input_ids)
  • 按照文档字符串中给定的顺序,长度可变的列表,其中包含一个或多个输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何问题,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor)- 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 输入 ID 是什么?
  • attention_mask(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选)- 用于避免在填充标记索引上执行注意力的蒙版。选择的蒙版值在[0, 1]中:
    • 1 表示未被“蒙版”的标记。
    • 0 表示被“蒙版”的标记。

    注意力蒙版是什么?

  • token_type_ids (Numpy array或形状为(batch_size, sequence_length)tf.Tensoroptional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids (Numpy array或形状为(batch_size, sequence_length)tf.Tensoroptional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask (Numpy array或形状为(num_heads,)(num_layers, num_heads)tf.Tensoroptional) — 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • inputs_embeds (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。这个参数只能在急切模式下使用,在图模式下,将使用配置中的值。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。这个参数只能在急切模式下使用,在图模式下,将使用配置中的值。
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下,该值将始终设置为 True。
  • training (bool, optional, 默认为False) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。
  • labels (tf.Tensor,形状为(batch_size,)optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]中。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tf.Tensor元组

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(CamembertConfig)和输入的不同元素。

  • loss (tf.Tensor,形状为(batch_size,)optional,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits (tf.Tensor,形状为(batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 一个用于每个层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

TFCamembertForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的方法需要在此函数中定义,但应该在之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, TFCamembertForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = TFCamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'optimism'
代码语言:javascript复制
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFCamembertForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.08

TFCamembertForMultipleChoice

class transformers.TFCamembertForMultipleChoice

<来源>

代码语言:javascript复制
( config *inputs **kwargs )

参数

  • config(CamembertConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

CamemBERT 模型,顶部带有多选分类头(池化输出顶部的线性层和 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或者
  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该“只需工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:

  • 只有一个包含input_ids的张量,没有其他内容:model(input_ids)
  • 一个变长列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

注意,在使用子类化创建模型和层时,您无需担心任何问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor)- 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
    • 1 表示未被“掩码”的标记,
    • 对于被“掩码”的标记。

    注意力掩码是什么?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor可选)- 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]。 位置 ID 是什么?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)- 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]中:
    • 1 表示头部未被“掩码”,
    • 0 表示头部被“掩码”。
  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)tf.Tensor可选)- 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式中该值将始终设置为 True。
  • trainingbool可选,默认为False)- 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • labels(形状为(batch_size,)tf.Tensor可选)- 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices]中,其中num_choices是输入张量第二维的大小。(参见上面的input_ids

返回

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(CamembertConfig)和输入的各种元素。

  • loss(形状为*(batch_size, )*的tf.Tensor可选,当提供labels时返回)— 分类损失。
  • logits(形状为(batch_size, num_choices)tf.Tensor)— num_choices是输入张量的第二维度。(参见上面的input_ids)。 分类分数(SoftMax 之前)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

TFCamembertForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数中定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, TFCamembertForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> model = TFCamembertForMultipleChoice.from_pretrained("camembert-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFCamembertForTokenClassification

class transformers.TFCamembertForTokenClassification

<来源>

代码语言:javascript复制
( config *inputs **kwargs )

参数

  • config(CamembertConfig)— 模型的配置类,包含所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

CamemBERT 模型在顶部有一个标记分类头(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。

这个模型继承自 TFPreTrainedModel。查看超类文档以了解库实现的通用方法(如下载或保存,调整输入嵌入大小,修剪头等)。

这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用诸如model.fit()之类的方法时,您应该可以“轻松地”使用 - 只需以model.fit()支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids的单个张量:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些内容,因为您可以像对待其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor) - 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是 input IDs?
  • attention_mask(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选) - 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
    • 1 用于not masked标记,
    • 0 用于masked标记。

    什么是 attention masks?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选) - 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是 token type IDs?

  • position_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选) - 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是 position IDs?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy 数组tf.Tensor可选) - 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被“masked”。
    • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选) - 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选) - 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的hidden_states。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下,该值将始终设置为 True。
  • training (bool可选,默认为False) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。
  • labels (tf.Tensor,形状为(batch_size, sequence_length)可选) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个tf.Tensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(CamembertConfig)和输入的各种元素。

  • loss (tf.Tensor,形状为(n,)可选,当提供labels时返回,其中 n 是未屏蔽标签的数量) — 分类损失。
  • logits (tf.Tensor,形状为(batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入输出,一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFCamembertForTokenClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, TFCamembertForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-large-ner-english")
>>> model = TFCamembertForTokenClassification.from_pretrained("ydshieh/roberta-large-ner-english")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']
代码语言:javascript复制
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
>>> round(float(loss), 2)
0.01

TFCamembertForQuestionAnswering

class transformers.TFCamembertForQuestionAnswering

<来源>

代码语言:javascript复制
( config *inputs **kwargs )

参数

  • config (CamembertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

CamemBERT 模型在顶部具有一个用于提取问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的顶部有线性层,用于计算span start logitsspan end logits)。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,当使用model.fit()等方法时,您应该可以“只需工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:

  • 仅具有input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,在使用子类化创建模型和层时,您不需要担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)- 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
    • 1 表示未被 mask的标记,
    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)- 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:
    • 0 对应于句子 A的标记,
    • 1 对应于句子 B的标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。
  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • start_positions(形状为(batch_size,)tf.Tensor可选)— 用于计算标记跨度起始位置的标签(索引)。位置被夹紧到序列的长度(sequence_length)。超出序列范围的位置不会用于计算损失。
  • end_positions(形状为(batch_size,)tf.Tensor可选)— 用于计算标记跨度结束位置的标签(索引)。位置被夹紧到序列的长度(sequence_length)。超出序列范围的位置不会用于计算损失。

返回

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含各种元素,取决于配置(CamembertConfig)和输入。

  • loss(形状为(batch_size,)tf.Tensor可选,当提供start_positionsend_positions时返回)— 总跨度提取损失是起始位置和结束位置的交叉熵之和。
  • start_logits(形状为(batch_size, sequence_length)tf.Tensor)— 跨度起始分数(SoftMax 之前)。
  • end_logits(形状为(batch_size, sequence_length)tf.Tensor)— 跨度结束分数(SoftMax 之前)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFCamembertForQuestionAnswering 的前向方法覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则会默默地忽略它们。

示例:

代码语言:javascript复制
>>> from transformers import AutoTokenizer, TFCamembertForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-base-squad2")
>>> model = TFCamembertForQuestionAnswering.from_pretrained("ydshieh/roberta-base-squad2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index   1]
>>> tokenizer.decode(predict_answer_tokens)
' puppet'
代码语言:javascript复制
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
>>> round(float(loss), 2)
0.86

0 人点赞