原文:
huggingface.co/docs/transformers
MBart 和 MBart-5
原文链接:
huggingface.co/docs/transformers/v4.37.2/en/model_doc/mbart
MBart 概述
MBart 模型是由 Yinhan Liu、Jiatao Gu、Naman Goyal、Xian Li、Sergey Edunov、Marjan Ghazvininejad、Mike Lewis、Luke Zettlemoyer 在多语言去噪预训练神经机器翻译中提出的。
根据摘要,MBART 是一个在许多语言上使用 BART 目标在大规模单语语料库上预训练的序列到序列去噪自动编码器。mBART 是第一个通过去噪多语言全文来预训练完整序列到序列模型的方法,而以前的方法只关注编码器、解码器或文本的部分重建。
该模型由valhalla贡献。作者的代码可以在这里找到。
MBart 的训练
MBart 是一个多语言编码器-解码器(序列到序列)模型,主要用于翻译任务。由于该模型是多语言的,它期望序列以不同的格式呈现。在源文本和目标文本中都添加了一个特殊的语言 id 标记。源文本格式为X [eos, src_lang_code]
,其中X
是源文本。目标文本格式为[tgt_lang_code] X [eos]
。bos
从未被使用。
常规的call()将对作为第一个参数传递的源文本格式进行编码,或者使用text
关键字,以及使用text_label
关键字参数传递的目标文本格式。
- 监督训练
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> # forward pass
>>> model(**inputs)
- 生成
在生成目标文本时,将
decoder_start_token_id
设置为目标语言 id。以下示例展示了如何使用facebook/mbart-large-en-ro模型将英语翻译成罗马尼亚语。
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX")
>>> article = "UN Chief Says There Is No Military Solution in Syria"
>>> inputs = tokenizer(article, return_tensors="pt")
>>> translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
"Şeful ONU declară că nu există o soluţie militară în Siria"
MBart-50 概述
MBart-50 是由 Yuqing Tang、Chau Tran、Xian Li、Peng-Jen Chen、Naman Goyal、Vishrav Chaudhary、Jiatao Gu、Angela Fan 在具有可扩展多语言预训练和微调的多语言翻译论文中介绍的。MBart-50 是使用原始mbart-large-cc25检查点创建的,通过扩展其嵌入层,使用额外的 25 个语言标记的随机初始化向量,然后在 50 种语言上进行预训练。
根据摘要
多语言翻译模型可以通过多语言微调来创建。与在一个方向上进行微调不同,预训练模型同时在许多方向上进行微调。它表明预训练模型可以扩展以包含额外的语言而不会损失性能。多语言微调平均提高了 1 个 BLEU 分数,超过了最强基线(无论是从头开始的多语言模型还是双语微调),同时比从头开始的双语基线平均提高了 9.3 个 BLEU 分数。
MBart-50 的训练
MBart-50 的文本格式与 mBART 略有不同。对于 MBart-50,语言 id 标记被用作源文本和目标文本的前缀,即文本格式为[lang_code] X [eos]
,其中lang_code
是源文本的源语言 id,目标文本的目标语言 id,X
分别是源文本或目标文本。
MBart-50 有自己的分词器 MBart50Tokenizer。
- 监督训练
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
src_text = " UN Chief Says There Is No Military Solution in Syria"
tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
model(**model_inputs) # forward pass
- 生成
要使用 mBART-50 多语言翻译模型生成,
eos_token_id
被用作decoder_start_token_id
,目标语言 id 被强制作为第一个生成的标记。要强制目标语言 id 作为第一个生成的标记,将forced_bos_token_id参数传递给generate方法。以下示例展示了如何使用facebook/mbart-50-large-many-to-many检查点在印地语到法语和阿拉伯语到英语之间进行翻译。
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है"
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# translate Hindi to French
tokenizer.src_lang = "hi_IN"
encoded_hi = tokenizer(article_hi, return_tensors="pt")
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Le chef de l 'ONU affirme qu 'il n 'y a pas de solution militaire en Syria."
# translate Arabic to English
tokenizer.src_lang = "ar_AR"
encoded_ar = tokenizer(article_ar, return_tensors="pt")
generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "The Secretary-General of the United Nations says there is no military solution in Syria."
文档资源
- 文本分类任务指南
- 问答任务指南
- 因果语言建模任务指南
- 掩码语言建模任务指南
- 翻译任务指南
- 摘要任务指南
MBartConfig
class transformers.MBartConfig
<来源>
代码语言:javascript复制( vocab_size = 50265 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 classifier_dropout = 0.0 scale_embedding = False pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 forced_eos_token_id = 2 **kwargs )
参数
-
vocab_size
(int
, 可选, 默认为 50265) — MBART 模型的词汇量。定义了在调用 MBartModel 或 TFMBartModel 时可以表示的不同标记数量。 -
d_model
(int
, 可选, 默认为 1024) — 层和池化层的维度。 -
encoder_layers
(int
, 可选, 默认为 12) — 编码器层数。 -
decoder_layers
(int
, 可选, 默认为 12) — 解码器层数。 -
encoder_attention_heads
(int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。 -
decoder_attention_heads
(int
, 可选, 默认为 16) — Transformer 解码器中每个注意力层的注意力头数。 -
decoder_ffn_dim
(int
, 可选, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。 -
encoder_ffn_dim
(int
, 可选, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。 -
activation_function
(str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 -
dropout
(float
, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 -
attention_dropout
(float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 -
activation_dropout
(float
, 可选, 默认为 0.0) — 全连接层内激活的 dropout 比率。 -
classifier_dropout
(float
, 可选, 默认为 0.0) — 分类器的 dropout 比率。 -
max_position_embeddings
(int
, 可选, 默认为 1024) — 该模型可能被使用的最大序列长度。通常将其设置为一个较大的值以防万一(例如 512、1024 或 2048)。 -
init_std
(float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。 -
encoder_layerdrop
(float
, 可选, 默认为 0.0) — 编码器的 LayerDrop 概率。有关更多详细信息,请参阅 LayerDrop 论文)。 -
decoder_layerdrop
(float
, 可选, 默认为 0.0) — 解码器的 LayerDrop 概率。有关更多详细信息,请参阅 LayerDrop 论文)。 -
scale_embedding
(bool
, 可选, 默认为False
) — 通过将 sqrt(d_model)除以来缩放嵌入。 -
use_cache
(bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用) -
forced_eos_token_id
(int
, 可选, 默认为 2) — 当达到max_length
时,强制作为最后生成的标记的标记 ID。通常设置为eos_token_id
。
这是用于存储 MBartModel 配置的配置类。它用于根据指定的参数实例化一个 MBART 模型,定义模型架构。使用默认值实例化配置将产生类似于 MBART facebook/mbart-large-cc25架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
示例:
代码语言:javascript复制>>> from transformers import MBartConfig, MBartModel
>>> # Initializing a MBART facebook/mbart-large-cc25 style configuration
>>> configuration = MBartConfig()
>>> # Initializing a model (with random weights) from the facebook/mbart-large-cc25 style configuration
>>> model = MBartModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
MBartTokenizer
class transformers.MBartTokenizer
< source >
代码语言:javascript复制( vocab_file bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' tokenizer_file = None src_lang = None tgt_lang = None sp_model_kwargs: Optional = None additional_special_tokens = None **kwargs )
构建一个 MBART 标记器。
改编自 RobertaTokenizer 和 XLNetTokenizer。基于SentencePiece。
对于源语言文档,标记化方法是<tokens> <eos> <language code>
,对于目标语言文档,是<language code>
` 用于目标语言文档。
示例:
代码语言:javascript复制>>> from transformers import MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
build_inputs_with_special_tokens
< source >
代码语言:javascript复制( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — 将添加特殊标记的 ID 列表。 -
token_ids_1
(List[int]
, 可选) — 序列对的可选第二个 ID 列表。
返回
List[int]
具有适当特殊标记的 input IDs 列表。
通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。MBART 序列具有以下格式,其中X
表示序列:
-
input_ids
(用于编码器)X [eos, src_lang_code]
-
decoder_input_ids
:(用于解码器)X [eos, tgt_lang_code]
BOS 从不使用。序列对不是预期的用例,但它们将在没有分隔符的情况下处理。
MBartTokenizerFast
class transformers.MBartTokenizerFast
< source >
代码语言:javascript复制( vocab_file = None tokenizer_file = None bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' src_lang = None tgt_lang = None additional_special_tokens = None **kwargs )
构建一个“快速”MBART 标记器(由 HuggingFace 的tokenizers库支持)。基于BPE。
此标记器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
对于源语言文档,标记化方法是<tokens> <eos> <language code>
,对于目标语言文档,是<language code>
` 用于目标语言文档。
示例:
代码语言:javascript复制>>> from transformers import MBartTokenizerFast
>>> tokenizer = MBartTokenizerFast.from_pretrained(
... "facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
build_inputs_with_special_tokens
< source >
代码语言:javascript复制( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — 将添加特殊标记的 ID 列表。 -
token_ids_1
(List[int]
, 可选) — 序列对的可选第二个 ID 列表。
返回
List[int]
具有适当特殊标记的 input IDs 列表。
通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。特殊标记取决于调用 set_lang。
MBART 序列具有以下格式,其中X
表示序列:
-
input_ids
(用于编码器)X [eos, src_lang_code]
-
decoder_input_ids
: (用于解码器)X [eos, tgt_lang_code]
BOS 从不使用。序列对不是预期的用例,但它们将在没有分隔符的情况下处理。
create_token_type_ids_from_sequences
<来源>
代码语言:javascript复制( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — ID 列表。 -
token_ids_1
(List[int]
, 可选) — 序列对的可选第二个 ID 列表。
返回
List[int]
零的列表。
从传递的两个序列创建一个用于序列对分类任务的掩码。mBART 不使用标记类型 ID,因此返回一个零列表。
set_src_lang_special_tokens
<来源>
代码语言:javascript复制( src_lang )
将特殊标记重置为源语言设置。无前缀和后缀=[eos, src_lang_code]。
set_tgt_lang_special_tokens
<来源>
代码语言:javascript复制( lang: str )
将特殊标记重置为目标语言设置。无前缀和后缀=[eos, tgt_lang_code]。
MBart50Tokenizer
class transformers.MBart50Tokenizer
<来源>
代码语言:javascript复制( vocab_file src_lang = None tgt_lang = None eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' sp_model_kwargs: Optional = None **kwargs )
参数
-
vocab_file
(str
) — 词汇表文件的路径。 -
src_lang
(str
, 可选) — 表示源语言的字符串。 -
tgt_lang
(str
, 可选) — 表示目标语言的字符串。 -
eos_token
(str
, 可选, 默认为"</s>"
) — 序列结束标记。 -
sep_token
(str
, 可选, 默认为"</s>"
) — 分隔符标记,在从多个序列构建序列时使用,例如,用于序列分类的两个序列或用于文本和问题的问题回答。它还用作使用特殊标记构建的序列的最后一个标记。 -
cls_token
(str
, 可选, 默认为"<s>"
) — 在进行序列分类时使用的分类器标记(对整个序列进行分类,而不是对每个标记进行分类)。当使用特殊标记构建序列时,它是序列的第一个标记。 -
unk_token
(str
, 可选, 默认为"<unk>"
) — 未知标记。词汇表中没有的标记无法转换为 ID,而是设置为此标记。 -
pad_token
(str
, 可选, 默认为"<pad>"
) — 用于填充的标记,例如,当批处理不同长度的序列时。 -
mask_token
(str
, 可选, 默认为"<mask>"
) — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。 -
sp_model_kwargs
(dict
, 可选) — 将传递给SentencePieceProcessor.__init__()
方法。SentencePiece 的 Python 包装器可用于设置:-
enable_sampling
: 启用子词正则化。 -
nbest_size
: 用于 unigram 的采样参数。对于 BPE-Dropout 无效。-
nbest_size = {0,1}
: 不执行采样。 -
nbest_size > 1
: 从 nbest_size 结果中进行采样。 -
nbest_size < 0
: 假设 nbest_size 是无限的,并使用前向过滤和后向采样算法从所有假设(格)中进行采样。
-
-
alpha
: unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的丢失概率。
-
构建一个 MBart50 分词器。基于SentencePiece。
这个分词器继承自 PreTrainedTokenizer,其中包含大部分主要方法。用户应参考这个超类以获取有关这些方法的更多信息。
示例:
代码语言:javascript复制>>> from transformers import MBart50Tokenizer
>>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> # model(**model_inputs) should work
build_inputs_with_special_tokens
<来源>
代码语言:javascript复制( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — 将添加特殊标记的 ID 列表。 -
token_ids_1
(List[int]
, 可选) — 序列对的第二个 ID 列表(可选)。
返回
List[int]
具有适当特殊标记的 input IDs 列表。
通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。MBART-50 序列具有以下格式,其中X
表示序列:
-
input_ids
(用于编码器)[src_lang_code] X [eos]
-
labels
: (用于解码器)[tgt_lang_code] X [eos]
BOS 从不使用。序列对不是预期的用例,但它们将在没有分隔符的情况下处理。
convert_tokens_to_string
<来源>
代码语言:javascript复制( tokens )
将一系列标记(字符串)转换为单个字符串。
get_special_tokens_mask
<来源>
代码语言:javascript复制( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — ID 列表。 -
token_ids_1
(List[int]
, 可选) — 序列对的第二个 ID 列表(可选)。 -
already_has_special_tokens
(bool
, 可选, 默认为False
) — 标记列表是否已经使用特殊标记格式化为模型。
返回
List[int]
一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。
从没有添加特殊标记的标记列表中检索序列 ID。当使用分词器的prepare_for_model
方法添加特殊标记时,将调用此方法。
set_src_lang_special_tokens
<来源>
代码语言:javascript复制( src_lang: str )
将特殊标记重置为源语言设置。前缀=[src_lang_code],后缀=[eos]。
set_tgt_lang_special_tokens
<来源>
代码语言:javascript复制( tgt_lang: str )
将特殊标记重置为目标语言设置。前缀=[tgt_lang_code],后缀=[eos]。
MBart50TokenizerFast
class transformers.MBart50TokenizerFast
<来源>
代码语言:javascript复制( vocab_file = None src_lang = None tgt_lang = None tokenizer_file = None eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' **kwargs )
参数
-
vocab_file
(str
) — 词汇文件的路径。 -
src_lang
(str
, 可选) — 表示源语言的字符串。 -
tgt_lang
(str
, 可选) — 表示目标语言的字符串。 -
eos_token
(str
, 可选, 默认为"</s>"
) — 序列结束标记。 -
sep_token
(str
, 可选, 默认为"</s>"
) — 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问题回答。它也用作使用特殊标记构建的序列的最后一个标记。 -
cls_token
(str
, 可选, 默认为"<s>"
) — 分类器标记,用于进行序列分类(对整个序列进行分类而不是每个标记的分类)。当使用特殊标记构建序列时,它是序列的第一个标记。 -
unk_token
(str
, optional, 默认为"<unk>"
) — 未知标记。词汇表中没有的标记无法转换为 ID,而是设置为此标记。 -
pad_token
(str
, optional, 默认为"<pad>"
) — 用于填充的标记,例如在批处理不同长度的序列时使用。 -
mask_token
(str
, optional, 默认为"<mask>"
) — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
为 mBART-50 构建一个“快速” MBART 分词器(由 HuggingFace 的 tokenizers 库支持)。基于 BPE。
这个分词器继承自 PreTrainedTokenizerFast,其中包含大部分主要方法。用户应该参考这个超类以获取有关这些方法的更多信息。
示例:
代码语言:javascript复制>>> from transformers import MBart50TokenizerFast
>>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> # model(**model_inputs) should work
build_inputs_with_special_tokens
< source >
代码语言:javascript复制( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — 将添加特殊标记的 ID 列表。 -
token_ids_1
(List[int]
, optional) — 第二个序列对的 ID 列表(可选)。
返回
List[int]
带有适当特殊标记的 输入 ID 列表。
通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。特殊标记取决于调用 set_lang。
MBART-50 序列具有以下格式,其中 X
代表序列:
-
input_ids
(用于编码器)[src_lang_code] X [eos]
-
labels
: (用于解码器)[tgt_lang_code] X [eos]
BOS 从不使用。序列对不是预期的用例,但它们将被处理而无需分隔符。
set_src_lang_special_tokens
< source >
代码语言:javascript复制( src_lang: str )
将特殊标记重置为源语言设置。前缀=[src_lang_code] 和后缀=[eos]。
set_tgt_lang_special_tokens
< source >
代码语言:javascript复制( tgt_lang: str )
将特殊标记重置为目标语言设置。前缀=[src_lang_code] 和后缀=[eos]。
PytorchHide Pytorch content
MBartModel
class transformers.MBartModel
< source >
代码语言:javascript复制( config: MBartConfig )
参数
config
(MBartConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的 MBART 模型输出原始隐藏状态,没有特定的头部。这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个 PyTorch torch.nn.Module 子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。
forward
< source >
代码语言:javascript复制( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 输入序列标记在词汇表中的索引。默认情况下,如果提供了填充,将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 输入 ID 是什么? -
attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
中:- 1 表示未被
掩码
的标记, - 0 表示被
掩码
的标记。
注意力掩码是什么?
- 1 表示未被
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)— 解码器输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 解码器输入 ID 是什么? MBart 使用特定的语言 id 标记作为decoder_input_ids
生成的起始标记,根据源语言和目标语言而变化,例如对于en_XX为 25004,对于de_DE为 25003。如果使用了past_key_values
,则可以选择仅输入最后的decoder_input_ids
(参见past_key_values
)。 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)— 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。默认情况下还将使用因果掩码。 -
head_mask
(形状为(encoder_layers, encoder_attention_heads)
的torch.Tensor
,可选)— 用于在编码器中使注意力模块的特定头部失效的掩码。掩码值选定在[0, 1]
中:- 1 表示头部未被
掩码
, - 0 表示头部被
掩码
。
- 1 表示头部未被
-
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)— 用于在解码器中使注意力模块的特定头部失效的掩码。掩码值选定在[0, 1]
中:- 1 表示头部未被
掩码
, - 0 表示头部被
掩码
。
- 1 表示头部未被
-
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)— 用于在解码器中使交叉注意力模块的特定头部失效的掩码。掩码值选定在[0, 1]
中:- 1 表示头部未被
掩码
, - 0 表示头部被
掩码
。
- 1 表示头部未被
-
encoder_outputs
(tuple(tuple(torch.FloatTensor)
, 可选)— 元组包括(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。 如果使用past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(这些未给出其过去键值状态的模型)而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
decoder_inputs_embeds
(torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — 可选地,可以选择直接传递嵌入表示而不是传递decoder_input_ids
。如果使用past_key_values
,则只需输入最后一个decoder_inputs_embeds
(参见past_key_values
)。如果您想要更多控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 如果decoder_input_ids
和decoder_inputs_embeds
都未设置,decoder_inputs_embeds
取inputs_embeds
的值。 -
use_cache
(bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_outputs.Seq2SeqModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(MBartConfig)和输入的不同元素。
-
last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的隐藏状态序列的输出。 如果仅使用past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。 -
decoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出和每一层的输出)。 解码器在每一层输出的隐藏状态以及可选的初始嵌入输出。 -
decoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选)— 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出和每一层的输出)。 编码器在每一层输出的隐藏状态以及可选的初始嵌入输出。 -
encoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。 编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
MBartModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, MBartModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartModel.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
MBartForConditionalGeneration
transformers.MBartForConditionalGeneration
类
<来源>
代码语言:javascript复制( config: MBartConfig )
参数
config
(MBartConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
具有语言建模头的 MBART 模型。在对预训练模型进行微调后,可用于摘要。此模型继承自 PreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
< source >
代码语言:javascript复制( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
之间:- 1 表示未被掩码的标记。
- 0 表示被掩码的标记。
什么是注意力掩码?
-
decoder_input_ids
(torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) — 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。 什么是解码器输入 ID? MBart 使用特定的语言 id 标记作为decoder_input_ids
生成的起始标记,该标记根据源语言和目标语言而变化,例如 en_XX 对应 25004,de_DE 对应 25003。如果使用了past_key_values
,则可选择仅输入最后的decoder_input_ids
(参见past_key_values
)。 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以用于去噪预训练,遵循论文。 -
decoder_attention_mask
(torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。默认情况下还将使用因果掩码。 -
head_mask
(torch.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 用于在编码器中使注意力模块中选择的头部失效的掩码。掩码值在[0, 1]
之间:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
-
decoder_head_mask
(torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于在解码器中使注意力模块中选择的头部失效的掩码。掩码值在[0, 1]
之间:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
-
cross_attn_head_mask
(torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于在解码器中使交叉注意力模块中选择的头部失效的掩码。掩码值在[0, 1]
之间:- 1 表示头部是
not masked
, - 0 表示头部是
masked
。
- 1 表示头部是
-
encoder_outputs
(tuple(tuple(torch.FloatTensor)
, optional) — 元组由(last_hidden_state
, optional:hidden_states
, optional:attentions
)组成,last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。 如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
的张量,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 -
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望更多地控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
decoder_inputs_embeds
(torch.FloatTensor
of shape(batch_size, target_sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用了past_key_values
,则可以选择仅输入最后的decoder_inputs_embeds
(请参见past_key_values
)。如果您希望更多地控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 如果decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 -
use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参见past_key_values
)。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。 -
labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
范围内,或者为-100(请参见input_ids
文档)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
范围内的标记。
返回
transformers.modeling_outputs.Seq2SeqLMOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个torch.FloatTensor
的元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(MBartConfig)和输入的不同元素。
-
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)- 语言建模损失。 -
logits
(形状为(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可以用于加速顺序解码(见past_key_values
输入)。 -
decoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组。 解码器每层的隐藏状态加上初始嵌入输出。 -
decoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组。 解码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组。 解码器交叉注意力层的注意力权重,在注意力 SoftMax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组。 每层编码器的隐藏状态加上初始嵌入输出。 -
encoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组。 编码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。
MBartForConditionalGeneration 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module
实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
翻译示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")
>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
>>> # Translate
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'
填充掩码示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
MBartForQuestionAnswering
class transformers.MBartForQuestionAnswering
< source >
代码语言:javascript复制( config )
参数
config
(MBartConfig) — 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
MBART 模型在顶部具有一个用于提取式问答任务的跨度分类头,例如 SQuAD(在隐藏状态输出顶部的线性层,用于计算跨度起始对数
和跨度结束对数
)。
此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
前向
<来源>
代码语言:javascript复制( input_ids: Tensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None start_positions: Optional = None end_positions: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 对于
未屏蔽
的标记, - 0 表示
被屏蔽
的标记。
什么是注意力掩码?
- 对于
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选) — 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是解码器输入 ID? MBart 使用特定的语言 ID 标记作为decoder_input_ids
生成的起始标记,根据源语言和目标语言不同而变化,例如en_XX为 25004,de_DE为 25003。如果使用past_key_values
,可选择仅输入最后的decoder_input_ids
(参见past_key_values
)。 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,用于去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。 -
head_mask
(形状为(encoder_layers, encoder_attention_heads)
的torch.Tensor
,可选) — 用于在编码器中将注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部
未屏蔽
, - 0 表示头部
被屏蔽
。
- 1 表示头部
-
decoder_head_mask
(torch.Tensor
的形状为(decoder_layers, decoder_attention_heads)
, optional) — 用于在解码器中使选定注意力模块的头部失效的掩码。掩码值选定在[0, 1]
:- 1 表示头部是
not masked
, - 0 表示头部是
masked
。
- 1 表示头部是
-
cross_attn_head_mask
(torch.Tensor
的形状为(decoder_layers, decoder_attention_heads)
, optional) — 用于在解码器中使选定交叉注意力模块的头部失效的掩码。掩码值选定在[0, 1]
:- 1 表示头部是
not masked
, - 0 表示头部是
masked
。
- 1 表示头部是
-
encoder_outputs
(tuple(tuple(torch.FloatTensor)
, optional) — 元组包含 (last_hidden_state
, optional:hidden_states
, optional:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,optional) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。 如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(torch.FloatTensor
的形状为(batch_size, sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果要更好地控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
decoder_inputs_embeds
(torch.FloatTensor
的形状为(batch_size, target_sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用了past_key_values
,可以选择仅输入最后的decoder_inputs_embeds
(参见past_key_values
)。如果要更好地控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 如果decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 -
use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。 -
start_positions
(torch.LongTensor
的形状为(batch_size,)
, optional) — 用于计算标记跨度的开始位置(索引)的标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内以计算损失。 -
end_positions
(torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算标记跨度结束位置的位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会计入损失计算。
返回
transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或一个torch.FloatTensor
的元组(如果传递return_dict=False
或者config.return_dict=False
时)包含根据配置(MBartConfig)和输入的不同元素。
-
loss
(torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits
(torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度开始得分(SoftMax 之前)。 -
end_logits
(torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(SoftMax 之前)。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或者config.use_cache=True
时返回) — 长度为config.n_layers
的元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。 -
decoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回) — 元组包含torch.FloatTensor
(如果模型有嵌入层,则为嵌入输出的一个 每一层的输出的一个)的形状为(batch_size, sequence_length, hidden_size)
的张量。 解码器在每一层输出的隐藏状态以及初始嵌入输出。 -
decoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或者config.output_attentions=True
时返回) — 元组包含torch.FloatTensor
(每一层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
的张量。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或者config.output_attentions=True
时返回) — 元组包含torch.FloatTensor
(每一层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
的张量。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回) — 元组包含torch.FloatTensor
(如果模型有嵌入层,则为嵌入输出的一个 每一层的输出的一个)的形状为(batch_size, sequence_length, hidden_size)
的张量。 编码器在每一层输出的隐藏状态以及初始嵌入输出。 -
encoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。 编码器的注意力权重,在注意力 softmax 之后使用,用于计算自注意力头中的加权平均值。
MBartForQuestionAnswering 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, MBartForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForQuestionAnswering.from_pretrained("facebook/mbart-large-cc25")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
MBartForSequenceClassification
class transformers.MBartForSequenceClassification
<来源>
代码语言:javascript复制( config: MBartConfig **kwargs )
参数
config
(MBartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法加载模型权重。
在顶部带有序列分类/头的 MBart 模型(在汇总输出的顶部有一个线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
<来源>
代码语言:javascript复制( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()获取详细信息。 什么是输入 ID? -
attention_mask
(torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:- 对于未被“masked”掉的标记为 1,
- 对于被
masked
掉的标记。
什么是注意力掩码?
-
decoder_input_ids
(torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()获取详细信息。 什么是解码器输入 ID? MBart 使用特定的语言 ID 标记作为decoder_input_ids
生成的起始标记,根据源语言和目标语言而变化,例如en_XX为 25004,de_DE为 25003。如果使用了past_key_values
,可以选择仅输入最后的decoder_input_ids
(参见past_key_values
)。 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以用于去噪预训练,遵循论文。 -
decoder_attention_mask
(torch.LongTensor
,形状为(batch_size, target_sequence_length)
,optional) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。因果掩码也将默认使用。 -
head_mask
(torch.Tensor
,形状为(encoder_layers, encoder_attention_heads)
,optional) — 用于在编码器中使注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]
之间:- 1 表示头部未被
masked
。 - 0 表示头部被
masked
。
- 1 表示头部未被
-
decoder_head_mask
(torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,optional) — 用于在解码器中使注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]
之间:- 1 表示头部未被
masked
。 - 0 表示头部被
masked
。
- 1 表示头部未被
-
cross_attn_head_mask
(torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,optional) — 用于在解码器中使交叉注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]
之间:- 1 表示头部未被
masked
。 - 0 表示头部被
masked
。
- 1 表示头部未被
-
encoder_outputs
(tuple(tuple(torch.FloatTensor)
,optional) — 元组包括(last_hidden_state
,optional:hidden_states
,optional:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,optional)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。 如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
的张量,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 -
decoder_inputs_embeds
(torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,optional) — 可选地,可以选择直接传递嵌入表示而不是传递decoder_input_ids
。如果使用了past_key_values
,可以选择仅输入最后的decoder_inputs_embeds
(参见past_key_values
)。如果您想要更多控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 如果decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 -
use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 -
labels
(torch.LongTensor
,形状为(batch_size,)
,optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或tuple(torch.FloatTensor)
transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含各种元素,取决于配置(MBartConfig)和输入。
-
loss
(torch.FloatTensor
,形状为(1,)
,optional,当提供label
时返回) — 分类(如果config.num_labels==1
则为回归)损失。 -
logits
(torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。 -
decoder_hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的输出 每层的输出)。 解码器在每一层输出的隐藏状态加上初始嵌入输出。 -
decoder_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。 解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的输出 每层的输出)。 编码器每层的隐藏状态加上初始嵌入输出。 -
encoder_attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。 编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
MBartForSequenceClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例:
代码语言:javascript复制>>> import torch
>>> from transformers import AutoTokenizer, MBartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例:
代码语言:javascript复制>>> import torch
>>> from transformers import AutoTokenizer, MBartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MBartForSequenceClassification.from_pretrained(
... "facebook/mbart-large-cc25", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
MBartForCausalLM
class transformers.MBartForCausalLM
<来源>
代码语言:javascript复制( config )
forward
<来源>
代码语言:javascript复制( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩盖的标记,
- 0 表示被掩盖的标记。
什么是注意力掩码?
-
encoder_hidden_states
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 -
encoder_attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值在[0, 1]
中选择: -
head_mask
(torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于使注意力模块中选择的头部失效的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被掩盖,
- 0 表示头部被掩盖。
-
cross_attn_head_mask
(torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于使交叉注意力模块中选择的头部失效的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被掩盖,
- 0 表示头部被掩盖。
-
past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。当模型用作序列到序列模型中的解码器时,只有在需要时才需要这两个额外的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。 如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算被“masked”的语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
或 -100(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(被“masked”),损失仅计算具有标签在[0, ..., config.vocab_size]
的标记。 -
use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。- 对于未被“masked”的标记为 1,
- 对于被
masked
的标记为 0。
-
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(MBartConfig)和输入的不同元素。
-
loss
(torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — 语言建模损失(用于下一个标记的预测)。 -
logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states
(tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) —torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的一个 每层输出的一个)的形状为(batch_size, sequence_length, hidden_size)
。 模型在每一层输出的隐藏状态加上可选的初始嵌入输出。 -
attentions
(tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) —torch.FloatTensor
元组(每层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。 在注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的torch.FloatTensor
元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态。仅在config.is_decoder = True
时相关。 包含预先计算的隐藏状态(注意力块中的键和值),可以用于加速顺序解码(查看past_key_values
输入)。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, MBartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
TensorFlow 隐藏 TensorFlow 内容
TFMBartModel
class transformers.TFMBartModel
<来源>
代码语言:javascript复制( config: MBartConfig *inputs **kwargs )
参数
config
(MBartConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的 MBART 模型,输出原始的隐藏状态,没有特定的头部。该模型继承自 TFPreTrainedModel。查看超类文档以获取库实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型也是一个 tf.keras.Model 的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit()
等方法时,应该可以正常工作 - 只需传递您的输入和标签以任何 model.fit()
支持的格式!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能的方法可以用来收集所有输入张量放在第一个位置参数中:
- 一个只包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,其中包含一个或多个按照文档字符串中给定顺序的输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心这些内容,因为您可以像对待其他 Python 函数一样传递输入!
call
<来源>
代码语言:javascript复制( input_ids: TFModelInputType = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False **kwargs ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的tf.Tensor
)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。在[0, 1]
中选择的掩码值:- 1 表示标记未被“掩盖”,
- 0 表示标记被“掩盖”。
什么是注意力掩码?
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)— 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是解码器输入 ID? MBart 使用特定的语言 ID 标记作为decoder_input_ids
生成的起始标记,根据源语言和目标语言而变化,例如对于en_XX为 25004,对于de_DE为 25003。如果使用past_key_values
,则可以选择仅输入最后的decoder_input_ids
(参见past_key_values
)。 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以用于去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)— 将默认生成并忽略填充标记。不建议为大多数用例设置此项。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)— 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
head_mask
(形状为(encoder_layers, encoder_attention_heads)
的tf.Tensor
,可选)— 用于在编码器中使注意力模块的选定头部失效的掩码。在[0, 1]
中选择的掩码值:- 1 表示头部未被“掩盖”,
- 0 表示头部被“掩盖”。
-
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的tf.Tensor
,可选)— 用于在解码器中使注意力模块的选定头部失效的掩码。在[0, 1]
中选择的掩码值:- 1 表示头部未被“掩盖”,
- 0 表示头部被“掩盖”。
-
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的tf.Tensor
,可选)— 用于使交叉注意力模块的选定头部失效的掩码。在[0, 1]
中选择的掩码值:- 1 表示头部未被“掩盖”,
- 0 表示头部被“掩盖”。
-
encoder_outputs
(tf.FloatTensor
,可选)— 编码器最后一层的隐藏状态的输出。在解码器的交叉注意力中使用。形状为(batch_size, sequence_length, hidden_size)
是一个序列 -
past_key_values
(Tuple[Tuple[tf.Tensor]]
,长度为config.n_layers
) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
use_cache
(bool
,可选,默认为True
) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块,如丢弃模块,在训练和评估之间具有不同的行为)。
返回
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或一个 tf.Tensor
元组(如果传递 return_dict=False
或 config.return_dict=False
)包含各种元素,具体取决于配置(MBartConfig)和输入。
-
last_hidden_state
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的隐藏状态序列输出。 如果使用past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(List[tf.Tensor]
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。 包含解码器的预计算隐藏状态(注意力块中的键和值)可以用于加速顺序解码。 -
decoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 一个用于每层的输出)。 解码器在每一层的隐藏状态以及初始嵌入输出。 -
decoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)— 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(用于嵌入输出和每一层的输出)。 编码器在每一层的隐藏状态加上初始嵌入输出。 -
encoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组。 编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFMBartModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, TFMBartModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = TFMBartModel.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFMBartForConditionalGeneration
class transformers.TFMBartForConditionalGeneration
<来源>
代码语言:javascript复制( config *inputs **kwargs )
参数
config
(MBartConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
带有语言建模头的 MBART 模型。在微调预训练模型后可用于摘要。此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,当使用model.fit()
等方法时,您应该可以“轻松地”使用 - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:
- 只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >
代码语言:javascript复制( input_ids: TFModelInputType = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Tuple[Tuple[tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为({0})
的tf.Tensor
)— 输入序列令牌在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(形状为({0})
的tf.Tensor
,可选)— 用于避免在填充令牌索引上执行注意力的掩码。选择的掩码值为[0, 1]
:- 对于未被掩码的令牌为 1,
- 对于被掩码的令牌为 0。
什么是注意力掩码?
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)— 词汇表中解码器输入序列令牌的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是解码器输入 ID? MBart 使用特定的语言 ID 令牌作为decoder_input_ids
生成的起始令牌,根据源语言和目标语言而变化,例如en_XX为 25004,de_DE为 25003。如果使用past_key_values
,则可以选择仅输入最后的decoder_input_ids
(请参阅past_key_values
)。 对于翻译和摘要训练,应提供decoder_input_ids
。如果没有提供decoder_input_ids
,模型将根据论文将input_ids
向右移动以创建此张量进行去噪预训练。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)— 将默认生成并忽略填充令牌。对于大多数用例,不建议设置此参数。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)— 每个解码器输入序列令牌的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
head_mask
(tf.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 用于使编码器中的注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]
之间:- 1 表示头部是
未被掩码
, - 0 表示头部是
已被掩码
。
- 1 表示头部是
-
decoder_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 解码器中用于使注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]
之间:- 1 表示头部是
未被掩码
, - 0 表示头部是
已被掩码
。
- 1 表示头部是
-
cross_attn_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于使交叉注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]
之间:- 1 表示头部是
未被掩码
, - 0 表示头部是
已被掩码
。
- 1 表示头部是
-
encoder_outputs
(tf.FloatTensor
, optional) — 编码器最后一层的输出的隐藏状态。用于解码器的交叉注意力。形状为(batch_size, sequence_length, hidden_size)
是一个序列 -
past_key_values
(Tuple[Tuple[tf.Tensor]]
长度为config.n_layers
) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去键值状态提供给此模型的)的形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 -
inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。 -
use_cache
(bool
, optional, 默认为True
) — 如果设置为True
,将返回past_key_values
键值状态并可用于加速解码(请参阅past_key_values
)。在训练期间设置为False
,在生成期间设置为True
-
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
, optional, 默认为False
) — 是否在训练模式中使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 -
labels
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
或 -100(请参阅input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。
返回
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或当config.return_dict=False
时)包括根据配置(MBartConfig)和输入的不同元素。
-
loss
(形状为(n,)
的tf.Tensor
,可选,当提供labels
时返回,其中 n 是未屏蔽标签的数量)— 语言建模损失。 -
logits
(形状为(batch_size, sequence_length, config.vocab_size)
的tf.Tensor
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
past_key_values
(List[tf.Tensor]
,可选,当传递use_cache=True
或当config.use_cache=True
时返回)— 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。 包含解码器的预先计算的隐藏状态(注意力块中的键和值),可以用于加速顺序解码(参见past_key_values
输入)。 -
decoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 一个用于每个层的输出)。 每个层的解码器的隐藏状态加上初始嵌入输出。 -
decoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)— 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 一个用于每个层的输出)。 每个层的编码器的隐藏状态加上初始嵌入输出。 -
encoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。 编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFMBartForConditionalGeneration 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
翻译示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration
>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")
>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="tf")
>>> # Translate
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'
掩码填充示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration
>>> import tensorflow as tf
>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="tf")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = tf.where(input_ids[0] == tokenizer.mask_token_id)[0, 0]
>>> probs = tf.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = tf.math.top_k(probs, 5)
>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
JAXHide JAX 内容
FlaxMBartModel
class transformers.FlaxMBartModel
<来源>
代码语言:javascript复制( config: MBartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(MBartConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)— 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
裸 MBart 模型变压器输出原始隐藏状态,没有特定的头部。该模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型还是 Flax Linen 的flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,该模型支持 JAX 的固有功能,例如:
- 即时编译(JIT)
- 自动微分
- 矢量化
- 并行化
__call__
<来源>
代码语言:javascript复制( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 输入序列标记在词汇表中的索引。默认情况下将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(形状为(batch_size, sequence_length)
的jnp.ndarray
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:- 1 表示“未被掩盖”的标记,
- 0 表示被“掩盖”的标记。
什么是注意力掩码?
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 解码器输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是解码器输入 ID? 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文。 -
decoder_attention_mask
(jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。 如果您想要更改填充行为,您应该根据您的需求进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。 -
position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
decoder_position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(MBartConfig)和输入的各种元素。
-
last_hidden_state
(jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的输出的隐藏状态序列。 如果使用past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后隐藏状态。 -
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参阅past_key_values
输入)。 -
decoder_hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 一个用于每个层的输出)。 每层解码器的隐藏状态加上初始嵌入输出。 -
decoder_attentions
(tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
, optional) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple ofjnp.ndarray
(one for the output of the embeddings one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
。 每层编码器的隐藏状态加上初始嵌入输出。 -
encoder_attentions
(tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
。 编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxMBartPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartModel
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartModel.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
encode
<来源>
代码语言:javascript复制( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(jnp.ndarray
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
:- 对于未被
masked
的标记为 1。 - 对于被
masked
的标记为 0。
什么是注意力掩码?
- 对于未被
-
position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包括根据配置(<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
)和输入的不同元素。
-
last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
)— 模型最后一层输出的隐藏状态序列。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 一个用于每个层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
decode
<来源>
代码语言:javascript复制( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(jnp.ndarray
,形状为(batch_size, target_sequence_length)
)— 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 解码器输入 ID 是什么? 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,用于去噪预训练,遵循论文。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) — 元组包括(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
encoder_attention_mask
(jnp.ndarray
,形状为(batch_size, sequence_length)
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:- 1 表示
未被掩码
的标记, - 0 表示
被掩码
的标记。
注意力掩码是什么?
- 1 表示
-
decoder_attention_mask
(jnp.ndarray
,形状为(batch_size, target_sequence_length)
,可选)— 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。 如果您想要更改填充行为,您应该根据自己的需求进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
decoder_position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,optional) — 解码器每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
past_key_values
(Dict[str, np.ndarray]
, optional, 由init_cache
返回或传递先前的past_key_values
时返回) — 预先计算的隐藏状态(注意力块中的键和值)的字典,可用于快速自回归解码。预先计算的键和值隐藏状态的形状为*[batch_size, max_length]*。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或者config.return_dict=False
)包含根据配置(<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
)和输入而异的各种元素。
-
last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 如果仅使用past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或者config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及如果config.is_encoder_decoder=True
还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True
在交叉注意力块中)可用于加速顺序解码(请参见past_key_values
输入)。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出,一个用于每一层的输出)。 模型在每一层输出的隐藏状态以及初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或者config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
, optional, 当output_attentions=True
且传递config.add_cross_attention=True
或者config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
FlaxMBartForConditionalGeneration
class transformers.FlaxMBartForConditionalGeneration
<来源>
代码语言:javascript复制( config: MBartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(MBartConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)— 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。 这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
带有语言建模头的 MMBart 模型。可用于摘要。此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 Flax Linen flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,此模型支持 JAX 的固有特性,例如:
- 即时编译(JIT)
- 自动微分
- 矢量化
- 并行化
__call__
<来源>
代码语言:javascript复制( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
of shape(batch_size, sequence_length)
) — 输入序列标记在词汇表中的索引。默认情况下将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(jnp.ndarray
of shape(batch_size, sequence_length)
, 可选) — 避免在填充标记索引上执行注意力的掩码。选择的掩码值为[0, 1]
:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
什么是注意力掩码?
-
decoder_input_ids
(jnp.ndarray
of shape(batch_size, target_sequence_length)
, 可选) — 解码器输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 解码器输入 ID 是什么? 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以用于去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)- 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。 如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。 -
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(MBartConfig)和输入的不同元素。
-
logits
(形状为(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tuple(jnp.ndarray)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values
输入)。 -
decoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 一个用于每层的输出)。 每层解码器的隐藏状态加上初始嵌入输出。 -
decoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每一层一个)。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每一层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。 编码器在每一层输出的隐藏状态以及初始嵌入输出。 -
encoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每一层一个)。 编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxMBartPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
摘要示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration, MBartConfig
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
填充掩码示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="np")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
encode
<来源>
代码语言:javascript复制( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(jnp.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
范围内。- 对于未被
masked
的标记为 1, - 对于被
masked
的标记为 0。
什么是注意力掩码?
- 对于未被
-
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
。 -
return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
)和输入而异的各种元素。
-
last_hidden_state
(形状为
(batch_size, sequence_length, hidden_size)的
jnp.ndarray`) — 模型最后一层输出的隐藏状态序列。 -
hidden_states
(tuple(jnp.ndarray)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每一层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
解码
<来源>
代码语言:javascript复制( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(形状为
(batch_size, target_sequence_length)的
jnp.ndarray`) — 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是解码器输入 ID? 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以便进行去噪预训练,遵循论文中的方法。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) — 元组包括(last_hidden_state
, 可选:hidden_states
, 可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
encoder_attention_mask
(形状为
(batch_size, sequence_length)的
jnp.ndarray, *可选*) — 避免在填充标记索引上执行注意力的掩码。掩码值选在
[0, 1]`之间:- 对于未被掩码的标记为
1
, - 对于被掩码的标记为
0
。
什么是注意力掩码?
- 对于未被掩码的标记为
-
decoder_attention_mask
(形状为
(batch_size, target_sequence_length)的
jnp.ndarray, *可选*) — 默认行为:生成一个张量,忽略
decoder_input_ids`中的填充标记。因果掩码也将默认使用。 如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
decoder_position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
past_key_values
(Dict[str, np.ndarray]
, optional, 由init_cache
返回或传递先前的past_key_values
时返回) — 预先计算的隐藏状态(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为*[batch_size, max_length]*。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
)和输入的各种元素。
-
logits
(jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出,一个用于每层的输出)。 模型在每层输出的隐藏状态加上初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 在注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。 -
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的jnp.ndarray
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态。仅在config.is_decoder = True
时相关。 包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(请参阅past_key_values
输入)。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
FlaxMBartForSequenceClassification
class transformers.FlaxMBartForSequenceClassification
< source >
代码语言:javascript复制( config: MBartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(MBartConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)— 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。 这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,则所有计算将使用给定的dtype
执行。请注意,这仅指定计算的数据类型,不会影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
MBart 模型在顶部具有序列分类/头(在汇总输出的顶部的线性层),例如用于 GLUE 任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 Flax 亚麻flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,此模型支持内在的 JAX 特性,例如:
- 即时(JIT)编译
- 自动微分
- 矢量化
- 并行化
__call__
<来源>
代码语言:javascript复制( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将被忽略。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(形状为(batch_size, sequence_length)
的jnp.ndarray
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:- 对于未被“masked”掩盖的标记为 1,
- 对于被
masked
掩盖的标记为 0。
什么是注意力掩码?
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 解码器输入 ID 是什么? 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文。 -
decoder_attention_mask
(jnp.ndarray
,形状为(batch_size, target_sequence_length)
,optional) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。 如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
decoder_position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
)包含根据配置(MBartConfig)和输入的不同元素。
-
logits
(jnp.ndarray
,形状为(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)分数(SoftMax 之前)。 -
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values
输入)。 -
decoder_hidden_states
(tuple(jnp.ndarray)
,optional,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 一个用于每个层的输出)。 解码器在每个层的隐藏状态以及初始嵌入输出。 -
decoder_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组。 编码器在每一层输出的隐藏状态加上初始嵌入输出。 -
encoder_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组。 编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxMBartPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
encode
<来源>
代码语言:javascript复制( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(jnp.ndarray
,形状为(batch_size, sequence_length)
,optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:- 对于未被
masked
的标记为 1。 - 对于被
masked
的标记为 0。
什么是注意力掩码?
- 对于未被
-
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(bool
,optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
,optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(transformers.models.mbart.configuration_mbart.MBartConfig
的类)和输入的各种元素。
-
last_hidden_state
(jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列输出。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
decode
< source >
代码语言:javascript复制( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(jnp.ndarray
of shape(batch_size, target_sequence_length)
) — 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是解码器输入 ID? 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以用于去噪预训练,遵循论文中的方法。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) — 元组包括(last_hidden_state
, 可选:hidden_states
, 可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层的隐藏状态序列,用于解码器的交叉注意力。 -
encoder_attention_mask
(jnp.ndarray
of shape(batch_size, sequence_length)
, optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:-
not masked
的标记为 1, -
masked
的标记为 0。
什么是注意力掩码?
-
-
decoder_attention_mask
(jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。默认情况下也将使用因果掩码。 如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
past_key_values
(Dict[str, np.ndarray]
,可选,由init_cache
返回或传递先前的past_key_values
时返回)— 预先计算的隐藏状态的字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为*[batch_size, max_length]*。 -
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或者config.return_dict=False
)包含根据配置(<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
)和输入而异的各种元素。
-
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
)— 模型最后一层的隐藏状态序列。 如果仅使用past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或者config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块中的键和值,以及在交叉注意力块中如果config.is_encoder_decoder=True
的情况下)可以用于加速顺序解码。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出,一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或者config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
,可选,当output_attentions=True
和config.add_cross_attention=True
被传递或者config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
FlaxMBartForQuestionAnswering
class transformers.FlaxMBartForQuestionAnswering
<来源>
代码语言:javascript复制( config: MBartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(MBartConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
MBart 模型在顶部具有用于提取问答任务的跨度分类头,如 SQuAD(在隐藏状态输出顶部的线性层,用于计算span start logits
和span end logits
)。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 Flax 亚麻flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,此模型支持 JAX 的固有特性,例如:
- 即时编译(JIT)
- 自动微分
- 矢量化
- 并行化
__call__
<来源>
代码语言:javascript复制( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
of shape(batch_size, sequence_length)
) — 输入序列标记在词汇表中的索引。默认情况下将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(jnp.ndarray
of shape(batch_size, sequence_length)
, 可选) — 避免在填充标记索引上执行注意力的掩码。选择在[0, 1]
中的掩码值:- 对于未被
masked
的标记为 1。 - 对于被
masked
的标记为 0。
什么是注意力掩码?
- 对于未被
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 解码器输入 ID 是什么? 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以用于去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。 如果您想要更改填充行为,您应该根据自己的需求进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个解码器输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(MBartConfig)和输入。
-
start_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 跨度起始分数(SoftMax 之前)。 -
end_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 跨度结束分数(SoftMax 之前)。 -
past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values
输入)。 -
decoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 一个用于每一层的输出)。 解码器在每一层输出的隐藏状态加上初始嵌入输出。 -
decoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每一层一个)。 解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每一层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 -
encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 一个用于每一层的输出)。 编码器在每一层输出的隐藏状态加上初始嵌入输出。 -
encoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每一层一个)。 编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxMBartPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartForQuestionAnswering.from_pretrained("facebook/mbart-large-cc25")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
encode
<来源>
代码语言:javascript复制( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是输入 ID? -
attention_mask
(jnp.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
范围内:- 对于未被
masked
的标记为 1。 - 对于被
masked
的标记为 0。
什么是注意力掩码?
- 对于未被
-
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
)和输入的各种元素。
-
last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 一个用于每层的输出)。 模型在每一层输出的隐藏状态以及初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
解码
<来源>
代码语言:javascript复制( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(jnp.ndarray
,形状为(batch_size, target_sequence_length)
) — 词汇表中解码器输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。 什么是解码器输入 ID? 对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以便进行去噪预训练,遵循论文。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) — 元组包含(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
encoder_attention_mask
(jnp.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]
范围内:- 1 代表
未被掩码
的标记, - 0 代表
被掩码
的标记。
什么是注意力掩码?
- 1 代表
-
decoder_attention_mask
(jnp.ndarray
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。 如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
decoder_position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
past_key_values
(Dict[str, np.ndarray]
, optional, 由init_cache
返回或传递先前的past_key_values
时返回) — 预先计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为*[batch_size, max_length]*。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
)和输入的各种元素。
-
last_hidden_state
(jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 如果使用past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后隐藏状态。 -
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True
还包括交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(嵌入输出和每层输出各一个)。 模型在每一层输出的隐藏状态以及初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
, optional, 当output_attentions=True
和config.add_cross_attention=True
被传递或者当config.output_attentions=True
时返回) — 每一层的jnp.ndarray
元组,形状为(batch_size, num_heads, sequence_length, sequence_length)
。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
预先计算的键和值隐藏状态的形状为*[batch_size, max_length]*。
-
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
)和输入的各种元素。
-
last_hidden_state
(jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 如果使用past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后隐藏状态。 -
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。 包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True
还包括交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(嵌入输出和每层输出各一个)。 模型在每一层输出的隐藏状态以及初始嵌入输出。 -
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。 -
cross_attentions
(tuple(jnp.ndarray)
, optional, 当output_attentions=True
和config.add_cross_attention=True
被传递或者当config.output_attentions=True
时返回) — 每一层的jnp.ndarray
元组,形状为(batch_size, num_heads, sequence_length, sequence_length)
。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
示例:
代码语言:javascript复制>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state