百度大数据面试SQL-合并用户浏览行为

2024-06-27 20:39:42 浏览数 (2)

一、题目

有一份用户访问记录表,记录用户id和访问时间,如果用户访问时间间隔小于60s则认为时一次浏览,请合并用户的浏览行为。

样例数据

代码语言:javascript复制
 ---------- -------------- 
| user_id  | access_time  |
 ---------- -------------- 
| 1        | 1736337600   |
| 1        | 1736337660   |
| 2        | 1736337670   |
| 1        | 1736337710   |
| 3        | 1736337715   |
| 2        | 1736337750   |
| 1        | 1736337760   |
| 3        | 1736337820   |
| 2        | 1736337850   |
| 1        | 1736337910   |
 ---------- -------------- 

二、分析

  1. 首先对每个用户的访问时间排序,计算出时间差,考察的是开窗函数lag();
  2. 对时间差进行判断,确认是否需要新建一个组;
  3. 然后使用sum()的开窗函数,累加小计,赋予组ID;

维度

评分

题目难度

⭐️⭐️⭐️

题目清晰度

⭐️⭐️⭐️⭐️⭐

业务常见度

⭐️⭐️⭐️⭐️

三、SQL

1.分用户计算出每次点击时间差;

执行SQL

代码语言:javascript复制
select user_id,
       access_time,
       last_access_time,
       access_time - last_access_time as time_diff
from (select user_id,
             access_time,
             lag(access_time) over (partition by user_id order by access_time) as last_access_time
      from user_access_log) t

查询结果

代码语言:javascript复制
 ---------- -------------- ------------------- ------------ 
| user_id  | access_time  | last_access_time  | time_diff  |
 ---------- -------------- ------------------- ------------ 
| 1        | 1736337600   | NULL              | NULL       |
| 1        | 1736337660   | 1736337600        | 60         |
| 1        | 1736337710   | 1736337660        | 50         |
| 1        | 1736337760   | 1736337710        | 50         |
| 1        | 1736337910   | 1736337760        | 150        |
| 2        | 1736337670   | NULL              | NULL       |
| 2        | 1736337750   | 1736337670        | 80         |
| 2        | 1736337850   | 1736337750        | 100        |
| 3        | 1736337715   | NULL              | NULL       |
| 3        | 1736337820   | 1736337715        | 105        |
 ---------- -------------- ------------------- ------------ 
2.确认是否是新的访问

执行SQL

代码语言:javascript复制
select user_id,
       access_time,
       last_access_time,
       if(access_time - last_access_time >= 60, 1, 0) as is_new_group
from (select user_id,
             access_time,
             lag(access_time) over (partition by user_id order by access_time) as last_access_time
      from user_access_log) t

查询结果

代码语言:javascript复制
 ---------- -------------- ------------------- --------------- 
| user_id  | access_time  | last_access_time  | is_new_group  |
 ---------- -------------- ------------------- --------------- 
| 1        | 1736337600   | NULL              | 0             |
| 1        | 1736337660   | 1736337600        | 1             |
| 1        | 1736337710   | 1736337660        | 0             |
| 1        | 1736337760   | 1736337710        | 0             |
| 1        | 1736337910   | 1736337760        | 1             |
| 2        | 1736337670   | NULL              | 0             |
| 2        | 1736337750   | 1736337670        | 1             |
| 2        | 1736337850   | 1736337750        | 1             |
| 3        | 1736337715   | NULL              | 0             |
| 3        | 1736337820   | 1736337715        | 1             |
 ---------- -------------- ------------------- --------------- 

3.得出结果

使用sum()over(partition by ** order by **)累加计算,给出组ID。聚合函数开窗使用order by 计算结果是从分组开始计算到当前行的结果,这里的技巧:需要新建组的时候就给标签赋值1,否则0,然后累加计算结果在新建组的时候值就会变化,根据聚合值分组,得到合并结果

执行SQL

代码语言:javascript复制
with t_group as
         (select user_id,
                 access_time,
                 last_access_time,
                 if(access_time - last_access_time >= 60, 1, 0) as is_new_group
          from (select user_id,
                       access_time,
                       lag(access_time) over (partition by user_id order by access_time) as last_access_time
                from user_access_log) t)
select user_id,
       access_time,
       last_access_time,
       is_new_group,
       sum(is_new_group) over (partition by user_id order by access_time asc) as group_id
from t_group

查询结果

代码语言:javascript复制
 ---------- -------------- ------------------- --------------- ----------- 
| user_id  | access_time  | last_access_time  | is_new_group  | group_id  |
 ---------- -------------- ------------------- --------------- ----------- 
| 1        | 1736337600   | NULL              | 0             | 0         |
| 1        | 1736337660   | 1736337600        | 1             | 1         |
| 1        | 1736337710   | 1736337660        | 0             | 1         |
| 1        | 1736337760   | 1736337710        | 0             | 1         |
| 1        | 1736337910   | 1736337760        | 1             | 2         |
| 2        | 1736337670   | NULL              | 0             | 0         |
| 2        | 1736337750   | 1736337670        | 1             | 1         |
| 2        | 1736337850   | 1736337750        | 1             | 2         |
| 3        | 1736337715   | NULL              | 0             | 0         |
| 3        | 1736337820   | 1736337715        | 1             | 1         |
 ---------- -------------- ------------------- --------------- ----------- 

这个同一个group_id为一组,可以进行合并,具体合并规则可以根据需求内容进行处理即可。

四、建表语句和数据插入

代码语言:javascript复制
--建表语句
CREATE TABLE user_access_log (
  user_id INT,
  access_time BIGINT
) ROW FORMAT DELIMITED FIELDS TERMINATED BY 't';
--插入数据
insert into user_access_log (user_id,access_time)
values
(1,1736337600),
(1,1736337660),
(2,1736337670),
(1,1736337710),
(3,1736337715),
(2,1736337750),
(1,1736337760),
(3,1736337820),
(2,1736337850),
(1,1736337910);

0 人点赞