一、题目
有一份用户访问记录表,记录用户id和访问时间,如果用户访问时间间隔小于60s则认为时一次浏览,请合并用户的浏览行为。
样例数据
代码语言:javascript复制 ---------- --------------
| user_id | access_time |
---------- --------------
| 1 | 1736337600 |
| 1 | 1736337660 |
| 2 | 1736337670 |
| 1 | 1736337710 |
| 3 | 1736337715 |
| 2 | 1736337750 |
| 1 | 1736337760 |
| 3 | 1736337820 |
| 2 | 1736337850 |
| 1 | 1736337910 |
---------- --------------
二、分析
- 首先对每个用户的访问时间排序,计算出时间差,考察的是开窗函数lag();
- 对时间差进行判断,确认是否需要新建一个组;
- 然后使用sum()的开窗函数,累加小计,赋予组ID;
维度 | 评分 |
---|---|
题目难度 | ⭐️⭐️⭐️ |
题目清晰度 | ⭐️⭐️⭐️⭐️⭐ |
业务常见度 | ⭐️⭐️⭐️⭐️ |
三、SQL
1.分用户计算出每次点击时间差;
执行SQL
代码语言:javascript复制select user_id,
access_time,
last_access_time,
access_time - last_access_time as time_diff
from (select user_id,
access_time,
lag(access_time) over (partition by user_id order by access_time) as last_access_time
from user_access_log) t
查询结果
代码语言:javascript复制 ---------- -------------- ------------------- ------------
| user_id | access_time | last_access_time | time_diff |
---------- -------------- ------------------- ------------
| 1 | 1736337600 | NULL | NULL |
| 1 | 1736337660 | 1736337600 | 60 |
| 1 | 1736337710 | 1736337660 | 50 |
| 1 | 1736337760 | 1736337710 | 50 |
| 1 | 1736337910 | 1736337760 | 150 |
| 2 | 1736337670 | NULL | NULL |
| 2 | 1736337750 | 1736337670 | 80 |
| 2 | 1736337850 | 1736337750 | 100 |
| 3 | 1736337715 | NULL | NULL |
| 3 | 1736337820 | 1736337715 | 105 |
---------- -------------- ------------------- ------------
2.确认是否是新的访问
执行SQL
代码语言:javascript复制select user_id,
access_time,
last_access_time,
if(access_time - last_access_time >= 60, 1, 0) as is_new_group
from (select user_id,
access_time,
lag(access_time) over (partition by user_id order by access_time) as last_access_time
from user_access_log) t
查询结果
代码语言:javascript复制 ---------- -------------- ------------------- ---------------
| user_id | access_time | last_access_time | is_new_group |
---------- -------------- ------------------- ---------------
| 1 | 1736337600 | NULL | 0 |
| 1 | 1736337660 | 1736337600 | 1 |
| 1 | 1736337710 | 1736337660 | 0 |
| 1 | 1736337760 | 1736337710 | 0 |
| 1 | 1736337910 | 1736337760 | 1 |
| 2 | 1736337670 | NULL | 0 |
| 2 | 1736337750 | 1736337670 | 1 |
| 2 | 1736337850 | 1736337750 | 1 |
| 3 | 1736337715 | NULL | 0 |
| 3 | 1736337820 | 1736337715 | 1 |
---------- -------------- ------------------- ---------------
3.得出结果
使用sum()over(partition by ** order by **)累加计算,给出组ID。聚合函数开窗使用order by 计算结果是从分组开始计算到当前行的结果,这里的技巧:需要新建组的时候就给标签赋值1,否则0,然后累加计算结果在新建组的时候值就会变化,根据聚合值分组,得到合并结果
执行SQL
代码语言:javascript复制with t_group as
(select user_id,
access_time,
last_access_time,
if(access_time - last_access_time >= 60, 1, 0) as is_new_group
from (select user_id,
access_time,
lag(access_time) over (partition by user_id order by access_time) as last_access_time
from user_access_log) t)
select user_id,
access_time,
last_access_time,
is_new_group,
sum(is_new_group) over (partition by user_id order by access_time asc) as group_id
from t_group
查询结果
代码语言:javascript复制 ---------- -------------- ------------------- --------------- -----------
| user_id | access_time | last_access_time | is_new_group | group_id |
---------- -------------- ------------------- --------------- -----------
| 1 | 1736337600 | NULL | 0 | 0 |
| 1 | 1736337660 | 1736337600 | 1 | 1 |
| 1 | 1736337710 | 1736337660 | 0 | 1 |
| 1 | 1736337760 | 1736337710 | 0 | 1 |
| 1 | 1736337910 | 1736337760 | 1 | 2 |
| 2 | 1736337670 | NULL | 0 | 0 |
| 2 | 1736337750 | 1736337670 | 1 | 1 |
| 2 | 1736337850 | 1736337750 | 1 | 2 |
| 3 | 1736337715 | NULL | 0 | 0 |
| 3 | 1736337820 | 1736337715 | 1 | 1 |
---------- -------------- ------------------- --------------- -----------
这个同一个group_id为一组,可以进行合并,具体合并规则可以根据需求内容进行处理即可。
四、建表语句和数据插入
代码语言:javascript复制--建表语句
CREATE TABLE user_access_log (
user_id INT,
access_time BIGINT
) ROW FORMAT DELIMITED FIELDS TERMINATED BY 't';
--插入数据
insert into user_access_log (user_id,access_time)
values
(1,1736337600),
(1,1736337660),
(2,1736337670),
(1,1736337710),
(3,1736337715),
(2,1736337750),
(1,1736337760),
(3,1736337820),
(2,1736337850),
(1,1736337910);