day9 二次分群和细胞周期

2024-07-01 15:33:23 浏览数 (2)

二次分群

输入数据并指定感兴趣的细胞

这里我选择CD8T细胞

代码语言:R复制
rm(list = ls())
library(Seurat)
library(dplyr)

load("../day5-6/sce.Rdata")
seu.obj = sce
p1 = DimPlot(seu.obj, reduction = "umap",label=T) NoLegend();p1

my_sub = "CD8 T"
sub.cells <- subset(seu.obj, idents = my_sub)

寻常差异基因

sub.cells.markers

代码语言:R复制
f = "obj.Rdata"
if(!file.exists(f)){
  sub.cells = sub.cells %>%
    NormalizeData() %>%
    FindVariableFeatures() %>%
    ScaleData(features = rownames(.)) %>%
    RunPCA(features = VariableFeatures(.))  %>%
    FindNeighbors(dims = 1:15) %>%
    FindClusters(resolution = 0.5) %>%
    RunUMAP(dims = 1:15) 
  save(sub.cells,file = f)
}

load(f)
DimPlot(sub.cells, reduction = 'umap',label = T) NoLegend()
sub.cells@meta.data$celltype = paste0("M",sub.cells$seurat_clusters) #把子对象的亚群注释结果添加到表格上面去。
save(sub.cells,file = "sub.cells.Rdata")

sub.cells.markers <- FindAllMarkers(sub.cells, only.pos = TRUE,  
                                    min.pct = 0.25, logfc.threshold = 0.25)
#每个亚群选前3
top10 <- sub.cells.markers %>% 
  group_by(cluster) %>% 
  top_n(n = 3, wt = avg_log2FC) %>% 
  pull(gene);top10

可视化

代码语言:R复制
VlnPlot(sub.cells, features = top10)
RidgePlot(sub.cells, features = top10)
FeaturePlot(sub.cells, features = top10)
DotPlot(sub.cells,features = top10)  RotatedAxis()
DoHeatmap(sub.cells, features = top10)   NoLegend()

二次分群的注释(可以看到下图分了3群)

代码语言:R复制
seu.obj$celltype = as.character(Idents(seu.obj))
seu.obj$celltype = ifelse(seu.obj$celltype==my_sub,
                          sub.cells$celltype[match(colnames(seu.obj),colnames(sub.cells))],
                          seu.obj$celltype)
Idents(seu.obj) = seu.obj$celltype
p2 = DimPlot(seu.obj,label = T) NoLegend()
p1 p2

细胞周期

输入数据(两份)

  • 一份是我们前面的数据seu.obj,分为单样本和多样本的两种情况
代码语言:R复制
#如果是单样本
load("../day5-6/sce.Rdata")
#如果是多样本
load("../day7/sce.all.Rdata")
  • 另一份是受细胞周期影响大的marroww数据,表达矩阵下载后读取并创建对象
代码语言:R复制
exp.mat <- read.delim("nestorawa_forcellcycle_expressionMatrix.txt",row.names = 1)
marrow <- CreateSeuratObject(counts = exp.mat,
                             project = "b",
                             min.cells = 3, 
                             min.features = 200)
marrow[["percent.mt"]] <- PercentageFeatureSet(marrow, pattern = "^MT-") 
#提琴图可以看出是一个过滤后的数据
VlnPlot(marrow, 
        features = c("nFeature_RNA","nCount_RNA", "percent.mt", 
        ncol = 3,pt.size = 0.5) 

细胞周期周期评分

自定义一个评分函数;主要用到CellCycleScoring

代码语言:R复制
check_cc =  function(ob){
  s.genes <- intersect(cc.genes$s.genes,rownames(ob))
  g2m.genes <- intersect(cc.genes$g2m.genes,rownames(ob))
  ob = ob %>% 
    NormalizeData() %>%  
    FindVariableFeatures() %>%  
    CellCycleScoring(s.features = s.genes, 
                     g2m.features = g2m.genes) %>%
    ScaleData(features = rownames(.)) %>%  
    RunPCA(features = c(s.genes,g2m.genes))
  return(ob)
}
#对两份数据进行评分
ch1 = check_cc(seu.obj);table(ch1$Phase)
ch2 = check_cc(marrow);table(ch2$Phase)

可视化

  • 调整坐标轴比较两个数据的评分和PCA
代码语言:R复制
library(patchwork)
PCAPlot(ch1,group.by = "Phase")  
  PCAPlot(ch2,group.by = "Phase")&
  xlim(-60,15)&
  ylim(-10,15)
  • 再比较一下S.Score和G2M.Score
代码语言:R复制
p1 = VlnPlot(ch1,"S.Score",group.by = "Phase")
p2 = VlnPlot(ch2,"S.Score",group.by = "Phase")
wrap_plots(p1,p2,nrow = 1) & ylim(-0.6,0.6)
p1 = VlnPlot(ch1,"G2M.Score",group.by = "Phase")
p2 = VlnPlot(ch2,"G2M.Score",group.by = "Phase")
wrap_plots(p1,p2,nrow = 1) & ylim(-0.5,1)

去除细胞周期的影响

如果是大多数点都集中在0点附近的,就可以不用去除细胞周期的影响!,分布范围较广或者是有较多的离群值那就需要要去除。

ob1对象1

代码语言:R复制
### 不考虑细胞周期
f = "ob1.Rdata"
if(!file.exists(f)){
  ob1 = seu.obj %>% 
    NormalizeData() %>%  
    FindVariableFeatures() %>%  
    ScaleData(features = rownames(.)) %>%  
    RunPCA(features = VariableFeatures(.))  %>%
    FindNeighbors(dims = 1:15) %>% 
    FindClusters(resolution = 0.5) %>% 
    RunUMAP(dims = 1:15) %>% 
    RunTSNE(dims = 1:15)
  save(ob1,file = f)
}
load(f)

ob2对象2

代码语言:R复制
### 考虑细胞周期
#cc.genes是Seurat包里自带的数据,无需任何赋值或加载的操作
s.genes <- intersect(cc.genes$s.genes,rownames(seu.obj))
g2m.genes <- intersect(cc.genes$g2m.genes,rownames(seu.obj))

f = "ob2.Rdata"
if(!file.exists(f)){
  ob2 = seu.obj %>% 
  NormalizeData() %>%  
  FindVariableFeatures() %>%  
  CellCycleScoring(s.features = s.genes, g2m.features = g2m.genes) %>%
  ScaleData(vars.to.regress = c("S.Score", "G2M.Score"),features = rownames(.)) %>%  #运行极其慢
  RunPCA(features = VariableFeatures(.))  %>%
  FindNeighbors(dims = 1:15) %>% 
  FindClusters(resolution = 0.5) %>% 
  RunUMAP(dims = 1:15) %>% 
  RunTSNE(dims = 1:15)
  save(ob2,file = f)
}

可视化比较

代码语言:R复制
p1 <- DimPlot(ob1, reduction = "umap",label = T) NoLegend()
p2 <- DimPlot(ob2, reduction = "umap",label = T) NoLegend()
p1 p2

#加注释版本
library(celldex)
library(SingleR)

f = "../day5-6/ref_BlueprintEncode.RData"
if(!file.exists(f)){
  ref <- celldex::HumanPrimaryCellAtlasData()
  save(ref,file = f)
}
ref <- get(load(f))
library(BiocParallel)
scRNA = ob1  #1
test = scRNA@assays$RNA$data
pred.scRNA <- SingleR(test = test, 
                      ref = ref,
                      labels = ref$label.main, 
                      clusters = scRNA@active.ident)
new.cluster.ids <- pred.scRNA$pruned.labels
names(new.cluster.ids) <- levels(scRNA)
scRNA <- RenameIdents(scRNA,new.cluster.ids)
p3 <- DimPlot(scRNA, reduction = "umap",label = T,pt.size = 0.5)   NoLegend()
m = scRNA

scRNA = ob2 #2
test = scRNA@assays$RNA$data
pred.scRNA <- SingleR(test = test, 
                      ref = ref,
                      labels = ref$label.main, 
                      clusters = scRNA@active.ident)
new.cluster.ids <- pred.scRNA$pruned.labels
names(new.cluster.ids) <- levels(scRNA)
scRNA <- RenameIdents(scRNA,new.cluster.ids)
p4 <- DimPlot(scRNA, reduction = "umap",label = T,pt.size = 0.5)   NoLegend()
p3 p4

table(as.character(Idents(m))==as.character(Idents(scRNA)))
#查看区别

0 人点赞