2 热点优化
热点分为热点操作和热点数据,以下分开进行讨论。
2.1 热点操作
零点刷新、零点下单、零点添加购物车等都属于热点操作。热点操作是用户的行为,不好改变,但可以做一些限制保护,比如用户频繁刷新页面时进行提示阻断。
2.2 热点数据
热点数据的处理三步走,一是热点识别,二是热点隔离,三是热点优化。
2.2.1 热点识别
热点数据分为静态热点和动态热点,具体如下:
- 静态热点:能够提前预测的热点数据。大促前夕,可以根据大促的行业特点、活动商家等纬度信息分析出热点商品,或者通过卖家报名的方式提前筛选;另外,还可以通过技术手段提前预测,例如对买家每天访问的商品进行大数据计算,然后统计出 TOP N 的商品,即可视为热点商品
- 动态热点:无法提前预测的热点数据。冷热数据往往是随实际业务场景发生交替变化的,尤其是如今直播卖货模式的兴起——带货商临时做一个广告,就有可能导致一件商品在短时间内被大量购买。由于此类商品日常访问较少,即使在缓存系统中一段时间后也会被逐出或过期掉,甚至在db中也是冷数据。 瞬时流量的涌入,往往导致缓存被击穿,请求直接到达DB,引发DB压力过大
因此秒杀系统需要实现热点数据的动态发现能力,一个常见的实现思路是:
- 异步采集交易链路各个环节的热点 Key 信息,如 Nginx采集访问URL或 Agent 采集热点日志(一些中间件本身已具备热点发现能力),提前识别潜在的热点数据
- 聚合分析热点数据,达到一定规则的热点数据,通过订阅分发推送到链路系统,各系统根据自身需求决定如何处理热点数据,或限流或缓存,从而实现热点保护
需要注意的是:
- 热点数据采集最好采用异步方式,一方面不会影响业务的核心交易链路,一方面可以保证采集方式的通用性
- 热点发现最好做到秒级实时,这样动态发现才有意义,实际上也是对核心节点的数据采集和分析能力提出了较高的要求
2.2.2 热点隔离
热点数据识别出来之后,第一原则就是将热点数据隔离出来,不要让 1% 影响到另外的 99%,可以基于以下几个层次实现热点隔离:
- 业务隔离。秒杀作为一种营销活动,卖家需要单独报名,从技术上来说,系统可以提前对已知热点做缓存预热
- 系统隔离。系统隔离是运行时隔离,通过分组部署和另外 99% 进行分离,另外秒杀也可以申请单独的域名,入口层就让请求落到不同的集群中
- 数据隔离。秒杀数据作为热点数据,可以启用单独的缓存集群或者DB服务组,从而更好的实现横向或纵向能力扩展
当然,实现隔离还有很多种办法。比如,可以按照用户来区分,为不同的用户分配不同的 Cookie,入口层路由到不同的服务接口中;再比如,域名保持一致,但后端调用不同的服务接口;又或者在数据层给数据打标进行区分等等,这些措施的目的都是把已经识别的热点请求和普通请求区分开来。
2.2.3 热点优化
热点数据隔离之后,也就方便对这 1% 的请求做针对性的优化,方式无外乎两种:
- 缓存:热点缓存是最为有效的办法。如果热点数据做了动静分离,那么可以长期缓存静态数据
- 限流:流量限制更多是一种保护机制。需要注意的是,各服务要时刻关注请求是否触发限流并及时进行review
2.2.4 小结
数据的热点优化与动静分离是不一样的,热点优化是基于二八原则对数据进行了纵向拆分,以便进行针对性地处理。热点识别和隔离不仅对“秒杀”这个场景有意义,对其他的高性能分布式系统也非常有参考价值。