【深度学习实验】卷积神经网络(六):自定义卷积神经网络模型(VGG)实现图片多分类任务

2024-07-30 08:35:04 浏览数 (2)

一、实验介绍

本实验实现了一个简化版VGG网络,并基于此完成图像分类任务。

VGG网络是深度卷积神经网络中的经典模型之一,由牛津大学计算机视觉组(Visual Geometry Group)提出。它在2014年的ImageNet图像分类挑战中取得了优异的成绩(分类任务第二,定位任务第一),被广泛应用于图像分类、目标检测和图像生成等任务。 VGG网络的主要特点是使用了非常小的卷积核尺寸(通常为3x3)和更深的网络结构。该网络通过多个卷积层和池化层堆叠在一起,逐渐增加网络的深度,从而提取图像的多层次特征表示。VGG网络的基本构建块是由连续的卷积层组成,每个卷积层后面跟着一个ReLU激活函数。在每个卷积块的末尾,都会添加一个最大池化层来减小特征图的尺寸。VGG网络的这种简单而有效的结构使得它易于理解和实现,并且在不同的任务上具有很好的泛化性能。 VGG网络有几个不同的变体,如VGG11、VGG13、VGG16和VGG19,它们的数字代表网络的层数。这些变体在网络深度和参数数量上有所区别,较深的网络通常具有更强大的表示能力,但也更加复杂。

二、实验环境

本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

代码语言:javascript复制
conda create -n DL python=3.7 
代码语言:javascript复制
conda activate DL
代码语言:javascript复制
pip install torch==1.8.1 cu102 torchvision==0.9.1 cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
代码语言:javascript复制
conda install matplotlib
代码语言:javascript复制
 conda install scikit-learn

2. 库版本介绍

软件包

本实验版本

目前最新版

matplotlib

3.5.3

3.8.0

numpy

1.21.6

1.26.0

python

3.7.16

scikit-learn

0.22.1

1.3.0

torch

1.8.1 cu102

2.0.1

torchaudio

0.8.1

2.0.2

torchvision

0.9.1 cu102

0.15.2

三、实验内容

ChatGPT:

卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、计算机视觉和模式识别等领域。它的设计灵感来自于生物学中视觉皮层的工作原理。 卷积神经网络通过多个卷积层、池化层全连接层组成。

  • 卷积层主要用于提取图像的局部特征,通过卷积操作和激活函数的处理,可以学习到图像的特征表示。
  • 池化层则用于降低特征图的维度,减少参数数量,同时保留主要的特征信息。
  • 全连接层则用于将提取到的特征映射到不同类别的概率上,进行分类或回归任务。

卷积神经网络在图像处理方面具有很强的优势,它能够自动学习到具有层次结构的特征表示,并且对平移、缩放和旋转等图像变换具有一定的不变性。这些特点使得卷积神经网络成为图像分类、目标检测、语义分割等任务的首选模型。除了图像处理,卷积神经网络也可以应用于其他领域,如自然语言处理和时间序列分析。通过将文本或时间序列数据转换成二维形式,可以利用卷积神经网络进行相关任务的处理。

0. 导入必要的工具包

代码语言:javascript复制
import torch 
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image
import matplotlib.pyplot as plt
import os

1. 构建数据集(CIFAR10Dataset)

a. read_csv_labels()

从CSV文件中读取标签信息并返回一个标签字典。

代码语言:javascript复制
def read_csv_labels(fname):
    """读取fname来给标签字典返回一个文件名"""
    with open(fname, 'r') as f:
        # 跳过文件头行(列名)
        lines = f.readlines()[1:]
    tokens = [l.rstrip().split(',') for l in lines]
    return dict(((name, label) for name, label in tokens))
  • 使用open函数打开指定文件名的CSV文件,并将文件对象赋值给变量f。这里使用'r'参数以只读模式打开文件。
  • 使用文件对象的readlines()方法读取文件的所有行,并将结果存储在名为lines的列表中。通过切片操作[1:],跳过了文件的第一行(列名),将剩余的行存储在lines列表中。
  • 列表推导式(list comprehension):对lines列表中的每一行进行处理。对于每一行,使用rstrip()方法去除行末尾的换行符,并使用split(',')方法将行按逗号分割为多个标记。最终,将所有行的标记组成的子列表存储在tokens列表中。
  • 使用字典推导式(dictionary comprehension)将tokens列表中的子列表转换为字典。对于tokens中的每个子列表,将子列表的第一个元素作为键(name),第二个元素作为值(label),最终返回一个包含这些键值对的字典。
b. CIFAR10Dataset
代码语言:javascript复制
class CIFAR10Dataset(Dataset):
    def __init__(self, folder_path, fname):
        self.labels = read_csv_labels(os.path.join(folder_path, fname))
        self.folder_path = os.path.join(folder_path, 'train')

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        img = read_image(self.folder_path   '/'   str(idx   1)   '.png')
        label = self.labels[str(idx   1)]

        return img, torch.tensor(int(label))
  • 构造函数:
    • 接受两个参数
      • folder_path表示数据集所在的文件夹路径
      • fname表示包含标签信息的文件名。
    • 调用read_csv_labels函数,传递folder_pathfname作为参数,以读取CSV文件中的标签信息,并将返回的标签字典存储在self.labels变量中。
    • 通过拼接folder_path和字符串'train'来构建数据集的文件夹路径,将结果存储在self.folder_path变量中。
  • def __len__(self)
    • 这是CIFAR10Dataset类的方法,用于返回数据集的长度,即样本的数量。
  • def __getitem__(self, idx): 这是CIFAR10Dataset类的方法,用于根据给定的索引idx获取数据集中的一个样本。它首先根据索引idx构建图像文件的路径,并调用read_image函数来读取图像数据,将结果存储在img变量中。然后,它通过将索引转换为字符串,并使用该字符串作为键来从self.labels字典中获取相应的标签,将结果存储在label变量中。最后,它返回一个元组,包含图像数据和经过torch.tensor转换的标签。

2. 构建模型(FeedForward)

参考前文:

【深度学习实验】卷积神经网络(五):深度卷积神经网络经典模型——VGG网络(卷积层、池化层、全连接层)_QomolangmaH的博客-CSDN博客

https://blog.csdn.net/m0_63834988/article/details/133350927?spm=1001.2014.3001.5501

代码语言:javascript复制
#  每个卷积块由Conv2d卷积   BatchNorm2d(批量标准化处理)   ReLU激活层组成
def conv_layer(chann_in, chann_out, k_size, p_size):
    layer = nn.Sequential(
        nn.Conv2d(chann_in, chann_out, kernel_size=k_size, padding=p_size),
        nn.BatchNorm2d(chann_out),
        nn.ReLU()
    )
    return layer
    
# vgg卷积模块是由几个相同的卷积块以及最大池化组成
def vgg_conv_block(in_list, out_list, k_list, p_list, pooling_k, pooling_s):

    layers = [conv_layer(in_list[i], out_list[i], k_list[i], p_list[i]) for i in range(len(in_list)) ]
    layers  = [nn.MaxPool2d(kernel_size = pooling_k, stride = pooling_s)]
    return nn.Sequential(*layers)

# vgg全连接层由Linear   BatchNorm1d   ReLU组成
def vgg_fc_layer(size_in, size_out):
    layer = nn.Sequential(
        nn.Linear(size_in, size_out),
        nn.BatchNorm1d(size_out),
        nn.ReLU()
    )
    return layer


# 为了简化,我们少使用了几层卷积层,方便大家使用
class VGG_S(nn.Module):
    def __init__ (self, num_classes):
        super().__init__()
        
        self.layer1 = vgg_conv_block([3,64], [64,64], [3,3], [1,1], 2, 2)   
        self.layer2 = vgg_conv_block([64,128], [128,128], [3,3], [1,1], 2, 2)
        self.layer3 = vgg_conv_block([128,256,256], [256,256,256], [3,3,3], [1,1,1], 2, 2)

        # 全连接层
        self.layer4 = vgg_fc_layer(4096, 1024)
        # Final layer
        self.layer5 = nn.Linear(1024, num_classes)
        
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        vgg16_features = self.layer3(out)
        out = vgg16_features.view(out.size(0), -1)
        out = self.layer4(out)
        out = self.layer5(out)

        return out

3.整合训练、评估、预测过程(Runner)

参考前文:

【深度学习实验】前馈神经网络(九):整合训练、评估、预测过程(Runner)_QomolangmaH的博客-CSDN博客

https://blog.csdn.net/m0_63834988/article/details/133219448?spm=1001.2014.3001.5501

(略有改动:)

代码语言:javascript复制
class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric=None):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        # 用于计算评价指标
        self.metric = metric
        
        # 记录训练过程中的评价指标变化
        self.dev_scores = []
        # 记录训练过程中的损失变化
        self.train_epoch_losses = []
        self.dev_losses = []
        # 记录全局最优评价指标
        self.best_score = 0
   
 
# 模型训练阶段
    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型设置为训练模式,此时模型的参数会被更新
        self.model.train()
        
        num_epochs = kwargs.get('num_epochs', 0)
        log_steps = kwargs.get('log_steps', 100)
        save_path = kwargs.get('save_path','best_model.pth')
        eval_steps = kwargs.get('eval_steps', 0)
        # 运行的step数,不等于epoch数
        global_step = 0
        
        if eval_steps:
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None')
                
        # 遍历训练的轮数
        for epoch in range(num_epochs):
            total_loss = 0
            # 遍历数据集
            for step, data in enumerate(train_loader):
                x, y = data
                logits = self.model(x.float())
                loss = self.loss_fn(logits, y.long())
                total_loss  = loss
                if step%log_steps == 0:
                    print(f'loss:{loss.item():.5f}')
                    
                loss.backward()
                self.optimizer.step()
                self.optimizer.zero_grad()
            # 每隔一定轮次进行一次验证,由eval_steps参数控制,可以采用不同的验证判断条件
            if eval_steps != 0 :
                if (epoch 1) % eval_steps ==  0:

                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f'[Evalute] dev score:{dev_score:.5f}, dev loss:{dev_loss:.5f}')
                
                    if dev_score > self.best_score:
                        self.save_model(f'model_{epoch 1}.pth')
                    
                        print(f'[Evaluate]best accuracy performance has been updated: {self.best_score:.5f}-->{dev_score:.5f}')
                        self.best_score = dev_score
                    
                # 验证过程结束后,请记住将模型调回训练模式   
                    self.model.train()
            
            global_step  = 1
            # 保存当前轮次训练损失的累计值
            train_loss = (total_loss/len(train_loader)).item()
            self.train_epoch_losses.append((global_step,train_loss))
        self.save_model(f'{save_path}.pth')   
        print('[Train] Train done')
        
    # 模型评价阶段
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None
        # 将模型设置为验证模式,此模式下,模型的参数不会更新
        self.model.eval()
        global_step = kwargs.get('global_step',-1)
        total_loss = 0
        self.metric.reset()
        
        for batch_id, data in enumerate(dev_loader):
            x, y = data
            logits = self.model(x.float())
            loss = self.loss_fn(logits, y.long()).item()
            total_loss  = loss 
            self.metric.update(logits, y)
            
        dev_loss = (total_loss/len(dev_loader))
        self.dev_losses.append((global_step, dev_loss))
        dev_score = self.metric.accumulate()
        self.dev_scores.append(dev_score)
        return dev_score, dev_loss
    
    # 模型预测阶段,
    def predict(self, x, **kwargs):
        self.model.eval()
        logits = self.model(x)
        return logits
    
    # 保存模型的参数
    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)
        
    # 读取模型的参数
    def load_model(self, model_path):
        self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))

4. __main__

代码语言:javascript复制
if __name__ == '__main__':
    batch_size = 20
    # 构建训练集
    train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')
    train_iter = DataLoader(train_data, batch_size=batch_size)
    # 构建测试集
    test_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')
    test_iter = DataLoader(test_data, batch_size=batch_size)

    # 模型训练
    num_classes = 10
    # 定义模型
    model = VGG_S(num_classes)
    # 定义损失函数
    loss_fn = F.cross_entropy
    # 定义优化器
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

    runner = Runner(model, optimizer, loss_fn, metric=None)
    runner.train(train_iter, num_epochs=10, save_path='chapter_5')

    # 模型预测
    runner.load_model('chapter_5.pth')
    x, label = next(iter(test_iter))
    predict = torch.argmax(runner.predict(x.float()), dim=1)
    print('predict:', predict)
    print('  label:', label)
预测结果
代码语言:javascript复制
predict: tensor([6, 1, 9, 6, 1, 1, 6, 7, 0, 3, 4, 7, 7, 1, 9, 0, 9, 5, 3, 6])
  label: tensor([6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6])

5. 代码整合

代码语言:javascript复制
# 导入必要的工具包
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image
import matplotlib.pyplot as plt
import os


def read_csv_labels(fname):
    """读取fname来给标签字典返回一个文件名"""
    with open(fname, 'r') as f:
        # 跳过文件头行(列名)
        lines = f.readlines()[1:]
    tokens = [l.rstrip().split(',') for l in lines]
    return dict(((name, label) for name, label in tokens))


class CIFAR10Dataset(Dataset):
    def __init__(self, folder_path, fname):
        self.labels = read_csv_labels(os.path.join(folder_path, fname))
        self.folder_path = os.path.join(folder_path, 'train')

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        img = read_image(self.folder_path   '/'   str(idx   1)   '.png')
        label = self.labels[str(idx   1)]

        return img, torch.tensor(int(label))


#  每个卷积块由Conv2d卷积   BatchNorm2d(批量标准化处理)   ReLU激活层组成
def conv_layer(chann_in, chann_out, k_size, p_size):
    layer = nn.Sequential(
        nn.Conv2d(chann_in, chann_out, kernel_size=k_size, padding=p_size),
        nn.BatchNorm2d(chann_out),
        nn.ReLU()
    )
    return layer


# vgg卷积模块是由几个相同的卷积块以及最大池化组成
def vgg_conv_block(in_list, out_list, k_list, p_list, pooling_k, pooling_s):
    layers = [conv_layer(in_list[i], out_list[i], k_list[i], p_list[i]) for i in range(len(in_list))]
    layers  = [nn.MaxPool2d(kernel_size=pooling_k, stride=pooling_s)]
    return nn.Sequential(*layers)


# vgg全连接层由Linear   BatchNorm1d   ReLU组成
def vgg_fc_layer(size_in, size_out):
    layer = nn.Sequential(
        nn.Linear(size_in, size_out),
        nn.BatchNorm1d(size_out),
        nn.ReLU()
    )
    return layer


# 为了简化,我们少使用了几层卷积层,方便大家使用
class VGG_S(nn.Module):
    def __init__(self, num_classes):
        super().__init__()

        self.layer1 = vgg_conv_block([3, 64], [64, 64], [3, 3], [1, 1], 2, 2)
        self.layer2 = vgg_conv_block([64, 128], [128, 128], [3, 3], [1, 1], 2, 2)
        self.layer3 = vgg_conv_block([128, 256, 256], [256, 256, 256], [3, 3, 3], [1, 1, 1], 2, 2)

        # 全连接层
        self.layer4 = vgg_fc_layer(4096, 1024)
        # Final layer
        self.layer5 = nn.Linear(1024, num_classes)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        vgg16_features = self.layer3(out)
        out = vgg16_features.view(out.size(0), -1)
        out = self.layer4(out)
        out = self.layer5(out)

        return out



class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric=None):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        # 用于计算评价指标
        self.metric = metric

        # 记录训练过程中的评价指标变化
        self.dev_scores = []
        # 记录训练过程中的损失变化
        self.train_epoch_losses = []
        self.dev_losses = []
        # 记录全局最优评价指标
        self.best_score = 0

    # 模型训练阶段
    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型设置为训练模式,此时模型的参数会被更新
        self.model.train()

        num_epochs = kwargs.get('num_epochs', 0)
        log_steps = kwargs.get('log_steps', 100)
        save_path = kwargs.get('save_path', 'best_model.pth')
        eval_steps = kwargs.get('eval_steps', 0)
        # 运行的step数,不等于epoch数
        global_step = 0

        if eval_steps:
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None')

        # 遍历训练的轮数
        for epoch in range(num_epochs):
            total_loss = 0
            # 遍历数据集
            for step, data in enumerate(train_loader):
                x, y = data
                logits = self.model(x.float())
                loss = self.loss_fn(logits, y.long())
                total_loss  = loss
                if step % log_steps == 0:
                    print(f'loss:{loss.item():.5f}')

                loss.backward()
                self.optimizer.step()
                self.optimizer.zero_grad()
            # 每隔一定轮次进行一次验证,由eval_steps参数控制,可以采用不同的验证判断条件
            if eval_steps != 0:
                if (epoch   1) % eval_steps == 0:

                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f'[Evalute] dev score:{dev_score:.5f}, dev loss:{dev_loss:.5f}')

                    if dev_score > self.best_score:
                        self.save_model(f'model_{epoch   1}.pth')

                        print(
                            f'[Evaluate]best accuracy performance has been updated: {self.best_score:.5f}-->{dev_score:.5f}')
                        self.best_score = dev_score

                    # 验证过程结束后,请记住将模型调回训练模式
                    self.model.train()

            global_step  = 1
            # 保存当前轮次训练损失的累计值
            train_loss = (total_loss / len(train_loader)).item()
            self.train_epoch_losses.append((global_step, train_loss))
        self.save_model(f'{save_path}.pth')
        print('[Train] Train done')

    # 模型评价阶段
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None
        # 将模型设置为验证模式,此模式下,模型的参数不会更新
        self.model.eval()
        global_step = kwargs.get('global_step', -1)
        total_loss = 0
        self.metric.reset()

        for batch_id, data in enumerate(dev_loader):
            x, y = data
            logits = self.model(x.float())
            loss = self.loss_fn(logits, y.long()).item()
            total_loss  = loss
            self.metric.update(logits, y)

        dev_loss = (total_loss / len(dev_loader))
        self.dev_losses.append((global_step, dev_loss))
        dev_score = self.metric.accumulate()
        self.dev_scores.append(dev_score)
        return dev_score, dev_loss

    # 模型预测阶段,
    def predict(self, x, **kwargs):
        self.model.eval()
        logits = self.model(x)
        return logits

    # 保存模型的参数
    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)

    # 读取模型的参数
    def load_model(self, model_path):
        self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))


if __name__ == '__main__':
    batch_size = 20
    # 构建训练集
    train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')
    train_iter = DataLoader(train_data, batch_size=batch_size)
    # 构建测试集
    test_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')
    test_iter = DataLoader(test_data, batch_size=batch_size)

    # 模型训练
    num_classes = 10
    # 定义模型
    model = VGG_S(num_classes)
    # 定义损失函数
    loss_fn = F.cross_entropy
    # 定义优化器
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

    runner = Runner(model, optimizer, loss_fn, metric=None)
    runner.train(train_iter, num_epochs=10, save_path='chapter_5')

    # 模型预测
    runner.load_model('chapter_5.pth')
    x, label = next(iter(test_iter))
    predict = torch.argmax(runner.predict(x.float()), dim=1)
    print('predict:', predict)
    print('  label:', label)

0 人点赞