【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向前Euler)【理论到程序】

2024-07-30 10:41:32 浏览数 (2)

常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(Ordinary Differential Equations, ODEs)的问题。

一、数值积分法

1. 一般步骤

  • 确定微分方程:
    • 给定微分方程组
    y'(x) = f(x, y(x))
  • 确定初始条件:
    • 初值问题包含一个初始条件
    y(a) = y_0

    ,其中

    a

    是定义域的起始点,

    y_0

    是初始值。

  • 选择数值方法:
    • 选择适当的数值方法来近似解(需要考虑精度、稳定性和计算效率),常见的数值方法包括欧拉方法、改进的欧拉方法、Runge-Kutta 方法等。
  • 离散化定义域:
    • 将定义域
    [a, b]

    分割为若干小步,即选择合适的步长

    h

    。通常,较小的步长能够提高数值解的精度,但也增加计算成本。

  • 数值迭代:
    • 使用选定的数值方法进行迭代计算:根据选择的方法,计算下一个点的函数值,并更新解。
  • 判断停止条件:
    • 判断是否达到满足指定精度的近似解:可以使用某种误差估计方法,例如控制局部截断误差或全局误差。
  • 输出结果:
    • 最终得到在给定定义域上满足初值问题的近似解。

2. 数值方法

  1. 欧拉方法(Euler Method):
    • 基本思想:根据微分方程的定义,使用离散步长逼近导数,进而逼近下一个点的函数值。
    • 公式:
    y_{n 1} = y_n h f(t_n, y_n)

    其中,

    y_n

    是第

    n

    步的函数值,

    h

    是步长,

    f(t_n, y_n)

    是在点

    (t_n, y_n)

    处的导数。

  2. 改进的欧拉方法(Improved Euler Method 或梯形法 Trapezoidal Rule):
    • 基本思想:使用两次近似来提高精度,首先使用欧拉方法计算中间点,然后用该点的导数估计值来计算下一个点。
    • 公式:
    y_{n 1} = y_n frac{h}{2} [f(t_n, y_n) f(t_{n 1}, y_n hf(t_n, y_n))]
  3. Runge-Kutta 方法:
    • 基本思想:通过多个阶段的计算来提高精度。其中最常见的是四阶 Runge-Kutta 方法。
    • 公式:
    k_1 = hf(t_n, y_n)
    k_2 = hf(t_n frac{h}{2}, y_n frac{k_1}{2})
    k_3 = hf(t_n frac{h}{2}, y_n frac{k_2}{2})
    k_4 = hf(t_n h, y_n k_3)
    y_{n 1} = y_n frac{1}{6}(k_1 2k_2 2k_3 k_4)

  这些方法中,步长

h

是一个关键参数,它决定了离散化的程度,选择合适的步长对于数值解的准确性和稳定性非常重要。

二、欧拉方法(Euler Method)

1. 向前欧拉法(前向欧拉法)

a. 基本理论
  1. 等距节点组:
    {X_n}

    被定义为区间

    [a, b]

    上的等距节点组,其中

    X_n = a nh

    h

    是步长,

    n

    是节点索引,这样的离散化有助于数值计算。

  2. 向前差商近似微商:
    • 在节点
    X_n

    处,通过向前差商

    frac{y(X_{n 1}) - y(X_n)}{h}

    近似替代微分方程

    y'(x) = f(x, y(x))

    中的导数项,得到

    y'(X_n) approx frac{y(X_{n 1}) - y(X_n)}{h} = f(X_n, y(X_n))
    • 这个近似通过将差商等于导数的思想,将微分方程转化为递推关系式。
  3. 递推公式:
    • 将上述近似公式改为等式,得到递推公式
    y_{n 1} = y_n hf(X_n, y_n)
    • 这个公式是 Euler 方法的核心,通过这个公式可以逐步计算得到近似解的数值。
  4. 步骤解释:
    n=0

    时,使用初始条件

    y_0

    计算

    y_1

    • 然后,利用
    y_1

    计算

    y_2

    ,以此类推,得到

    y_n

    ,直到

    n=N

    ,其中

    N

    是节点数。

    • 这个过程形成了一个逐步逼近微分方程解的序列。
  5. 几何解释:
    • 在几何上,Euler 方法的求解过程可以解释为在积分曲线上通过连接相邻点的折线来逼近微分方程的解,因而被称为折线法
  6. 截断误差:
    • 通过 Taylor 展开,可以得到 Euler 方法的截断误差公式(忽略
    h^2

    项)

    y(x_{n 1}) = y(x_n) hf(X_n, y_n) O(h^2)
    • 这表明 Euler 方法的误差主要来自于
    h

    的一阶项,因此选择较小的步长可以提高方法的精度。

b. 典例解析

计算过程:

  1. 初始化:
x_0 = 0

,

y_0 = 1

.

  1. 计算
x_1

y_1

x_1 = x_0 h=0.1
y_1 = y_0 h f(x_0, y_0) = 1 0.1 cdot (y_0-frac{2x_0}{y_0}) = 1 0.1 cdot 1 = 1.1

.

  1. 计算
x_2

y_2

x_2 = x_1 h=0.2
y_2 = y_1 h f(x_1, y_1) = 1.1 0.1 cdot (y_1-frac{2x_1}{y_1}) = 1.1 0.1 cdot (1.1-0.181819)= 1.191818

.

  1. 计算
x_3

y_3

………………
c. 算法实现
代码语言:javascript复制
import numpy as np
import matplotlib.pyplot as plt


def forward_euler(f, y0, a, b, h):
    """
    使用向前欧拉法求解一阶常微分方程初值问题

    Parameters:
    - f: 函数,表示微分方程的右侧项,形式为 f(x, y)
    - y0: 初始条件,表示在 x=a 处的函数值
    - a: 区间起点
    - b: 区间终点
    - h: 步长

    Returns:
    - x_values: 区间 [a, b] 上的离散节点
    - y_values: 对应节点上的函数值的近似解
    """

    num_steps = int((b - a) / h)   1  # 计算步数
    x_values = np.linspace(a, b, num_steps)  # 生成离散节点
    y_values = np.zeros(num_steps)  # 初始化结果数组

    y_values[0] = y0  # 设置初始条件

    # 使用向前欧拉法进行逐步迭代
    for i in range(1, num_steps):
        x = x_values[i - 1]
        y = y_values[i - 1]
        y_values[i] = y   h * f(x, y)

    return x_values, y_values


# 示例:求解 y' = y - 2x/y,初始条件 y(0) = 1 在区间 [0, 1] 上的近似解
def example_function(x, y):
    return y - 2*x/y


a, b = 0, 1  # 区间 [a, b]
y0 = 1  # 初始条件 y(0) = 1
h = 0.1  # 步长

x_values, y_values = forward_euler(example_function, y0, a, b, h)

# 绘制结果
plt.plot(x_values, y_values, label='Forward Euler')
plt.plot(x_values, np.sqrt(1 2*x_values), label='Exact Solution')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

0 人点赞