转录组分析—GSE200033二分组(去除异常值Vs未去除)

2024-07-31 18:26:56 浏览数 (1)

转录组分析—GSE200033二分组(去除异常值Vs未去除)

1 数据的读取与导入

1.1 文件下载

直接从GEO官网下载表达矩阵,临床信息表格(存放在Series Matrix File中),放在工作目录下;

表达矩阵有两个GSE200033_CountTable_BMDM.csv.gz,GSE200033_normCounts_BMDM.csv.gz(标准化后),区别如下,这里我们选择前者。

代码语言:r复制
#查看二者的区别
dat <- fread("GSE200033_CountTable_BMDM.csv.gz")
dat1 <- fread("GSE200033_normCounts_BMDM.csv.gz")

1.2 读取与整理

代码语言:r复制
#项目名称
rm(list=ls())
proj = "GSE200033"


#表达矩阵
library(tinyarray)
library(data.table)
dat <- read.csv("GSE200033_CountTable_BMDM.csv.gz",header = T)
dim(dat)
#> [1] 24421    13
rownames(dat) <- dat$X
dat <- dat[,3:7]
colnames(dat) <- c("2_DMSO_Ova","3_DMSO_Ova",
                   "4_IBET_Ova","5_IBET_Ova","6_IBET_Ova")
#检查行名、列名
#rownames(dat)
colnames(dat)
#> [1] "2_DMSO_Ova" "3_DMSO_Ova" "4_IBET_Ova" "5_IBET_Ova" "6_IBET_Ova"
# 转换为整数矩阵
exp <-as.matrix(round(dat))

#临床信息在表头上不需要处理clinical占位置,无实际含义
clinical =1

nrow(exp)
#> [1] 24421
exp = exp[apply(exp, 1, function(x) sum(x > 0) > 0.5*ncol(exp)), ]
nrow(exp)
#> [1] 13705

这样就把表达矩阵的形式转化为行名为基因名,列名为分组信息的名字。本意是做前6个GSM的比较,但是后续的PCA结果显示,样本1为离群值,因此去除了样本1后重新分析了一遍。

代码语言:r复制
#分组信息的获取
library(stringr)
k = str_detect(colnames(exp),"DMSO");table(k) 
Group = ifelse(k,"DMSO","IBET")
Group = factor(Group,levels = c("DMSO","IBET"));Group
data.frame(colnames(exp),Group)
#保存数据
save(exp,Group,proj,clinical,file = paste0(proj,".Rdata"))

2 差异基因

三大R包的差异基因分析

代码语言:r复制
rm(list = ls())
load("GSE200033.Rdata")
table(Group)
#> Group
#> DMSO IBET 
#>    2    3
#deseq2----
library(DESeq2)
colData <- data.frame(row.names =colnames(exp), 
                      condition=Group)
#注意事项:如果多次运行,表达矩阵改动过的话,需要从工作目录下删除下面if括号里的文件
if(!file.exists(paste0(proj,"_dd.Rdata"))){
  dds <- DESeqDataSetFromMatrix(
  countData = exp,
  colData = colData,
  design = ~ condition)
  dds <- DESeq(dds)
  save(dds,file = paste0(proj,"_dd.Rdata"))
}
load(file = paste0(proj,"_dd.Rdata"))
class(dds)
#> [1] "DESeqDataSet"
#> attr(,"package")
#> [1] "DESeq2"
res <- results(dds, contrast = c("condition",rev(levels(Group))))
#constrast
c("condition",rev(levels(Group)))
#> [1] "condition" "IBET"      "DMSO"
class(res)
#> [1] "DESeqResults"
#> attr(,"package")
#> [1] "DESeq2"
DEG1 <- as.data.frame(res)
library(dplyr)
DEG1 <- arrange(DEG1,pvalue)
DEG1 = na.omit(DEG1)
head(DEG1)
#>         baseMean log2FoldChange     lfcSE      stat       pvalue         padj
#> Kctd12 7068.6436       3.154592 0.1539593  20.48978 2.655694e-93 3.231183e-89
#> Ccr5   1068.4898      -4.493158 0.2597624 -17.29718 4.939449e-67 3.004914e-63
#> H3f3b  6887.4175       2.089414 0.1220509  17.11920 1.067240e-65 4.328371e-62
#> Gpr183  287.3395      -3.565865 0.2232215 -15.97456 1.922093e-57 5.846526e-54
#> Brd2   8184.5773       2.496878 0.1594698  15.65737 2.958994e-55 7.200417e-52
#> Plau   3264.8888      -2.561643 0.1640528 -15.61475 5.777151e-55 1.171510e-51

#添加change列标记基因上调下调
logFC_t = 1
pvalue_t = 0.05

k1 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange < -logFC_t);table(k1)
#> k1
#> FALSE  TRUE 
#> 11295   872
k2 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange > logFC_t);table(k2)
#> k2
#> FALSE  TRUE 
#> 11636   531
DEG1$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
table(DEG1$change)
#> 
#>  DOWN   NOT    UP 
#>   872 10764   531
head(DEG1)
#>         baseMean log2FoldChange     lfcSE      stat       pvalue         padj
#> Kctd12 7068.6436       3.154592 0.1539593  20.48978 2.655694e-93 3.231183e-89
#> Ccr5   1068.4898      -4.493158 0.2597624 -17.29718 4.939449e-67 3.004914e-63
#> H3f3b  6887.4175       2.089414 0.1220509  17.11920 1.067240e-65 4.328371e-62
#> Gpr183  287.3395      -3.565865 0.2232215 -15.97456 1.922093e-57 5.846526e-54
#> Brd2   8184.5773       2.496878 0.1594698  15.65737 2.958994e-55 7.200417e-52
#> Plau   3264.8888      -2.561643 0.1640528 -15.61475 5.777151e-55 1.171510e-51
#>        change
#> Kctd12     UP
#> Ccr5     DOWN
#> H3f3b      UP
#> Gpr183   DOWN
#> Brd2       UP
#> Plau     DOWN

#edgeR----
library(edgeR)

dge <- DGEList(counts=exp,group=Group)
dge$samples$lib.size <- colSums(dge$counts)
dge <- calcNormFactors(dge) 

design <- model.matrix(~Group)

dge <- estimateGLMCommonDisp(dge, design)
dge <- estimateGLMTrendedDisp(dge, design)
dge <- estimateGLMTagwiseDisp(dge, design)

fit <- glmFit(dge, design)
fit <- glmLRT(fit) 

DEG2=topTags(fit, n=Inf)
class(DEG2)
#> [1] "TopTags"
#> attr(,"package")
#> [1] "edgeR"
DEG2=as.data.frame(DEG2)
head(DEG2)
#>            logFC   logCPM       LR       PValue          FDR
#> Sema4d -2.819340 7.941342 422.0946 8.541659e-94 1.170634e-89
#> Ccr5   -4.328710 6.792529 409.8625 3.926969e-91 2.690956e-87
#> Plau   -2.688427 8.719388 353.1610 8.685305e-79 3.967737e-75
#> Gpr183 -3.526972 5.049178 267.3149 4.366338e-60 1.496017e-56
#> Sat1    2.638522 8.577100 266.8574 5.493330e-60 1.505722e-56
#> Mt1     2.544215 7.199551 263.5216 2.930275e-59 6.693237e-56

k1 = (DEG2$PValue < pvalue_t)&(DEG2$logFC < -logFC_t)
k2 = (DEG2$PValue < pvalue_t)&(DEG2$logFC > logFC_t)
DEG2$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))

head(DEG2)
#>            logFC   logCPM       LR       PValue          FDR change
#> Sema4d -2.819340 7.941342 422.0946 8.541659e-94 1.170634e-89   DOWN
#> Ccr5   -4.328710 6.792529 409.8625 3.926969e-91 2.690956e-87   DOWN
#> Plau   -2.688427 8.719388 353.1610 8.685305e-79 3.967737e-75   DOWN
#> Gpr183 -3.526972 5.049178 267.3149 4.366338e-60 1.496017e-56   DOWN
#> Sat1    2.638522 8.577100 266.8574 5.493330e-60 1.505722e-56     UP
#> Mt1     2.544215 7.199551 263.5216 2.930275e-59 6.693237e-56     UP
table(DEG2$change)
#> 
#>  DOWN   NOT    UP 
#>  1065 11922   718
#limma----
library(limma)
dge <- edgeR::DGEList(counts=exp)
dge <- edgeR::calcNormFactors(dge)
design <- model.matrix(~Group)
v <- voom(dge,design, normalize="quantile")

fit <- lmFit(v, design)
fit= eBayes(fit)

DEG3 = topTable(fit, coef=2, n=Inf)
DEG3 = na.omit(DEG3)

k1 = (DEG3$P.Value < pvalue_t)&(DEG3$logFC < -logFC_t)
k2 = (DEG3$P.Value < pvalue_t)&(DEG3$logFC > logFC_t)
DEG3$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
table(DEG3$change)
#> 
#>  DOWN   NOT    UP 
#>   866 12091   748
head(DEG3)
#>            logFC  AveExpr         t      P.Value    adj.P.Val        B change
#> Plau   -2.768474 8.145581 -32.11575 3.588485e-09 4.485476e-05 11.72741   DOWN
#> Sema4d -2.858756 7.294563 -28.82385 7.899272e-09 4.485476e-05 11.05425   DOWN
#> Sat1    2.590141 8.099939  27.15005 1.221555e-08 4.485476e-05 10.70106     UP
#> Kctd12  3.115596 9.486043  26.75825 1.357953e-08 4.485476e-05 10.60613     UP
#> H3f3b   2.041197 9.744115  26.08128 1.636438e-08 4.485476e-05 10.43943     UP
#> Brd2    2.525475 9.850541  25.22432 2.086714e-08 4.766403e-05 10.21866     UP

tj = data.frame(deseq2 = as.integer(table(DEG1$change)),
           edgeR = as.integer(table(DEG2$change)),
           limma_voom = as.integer(table(DEG3$change)),
           row.names = c("down","not","up")
          );tj
#>      deseq2 edgeR limma_voom
#> down    872  1065        866
#> not   10764 11922      12091
#> up      531   718        748
save(DEG1,DEG2,DEG3,Group,tj,file = paste0(proj,"_DEG.Rdata"))

可视化

代码语言:r复制
library(ggplot2)
library(tinyarray)
exp[1:4,1:4]
#>        2_DMSO_Ova 3_DMSO_Ova 4_IBET_Ova 5_IBET_Ova
#> Mrpl15        290        251        277        184
#> Lypla1        780        691        811        576
#> Tcea1        1459       1264       1395       1036
#> Rgs20           3          3          4          0
# cpm 去除文库大小的影响
dat = log2(cpm(exp) 1)
pca.plot = draw_pca(dat,Group);pca.plot


save(pca.plot,file = paste0(proj,"_pcaplot.Rdata"))

cg1 = rownames(DEG1)[DEG1$change !="NOT"]
cg2 = rownames(DEG2)[DEG2$change !="NOT"]
cg3 = rownames(DEG3)[DEG3$change !="NOT"]

h1 = draw_heatmap(dat[cg1,],Group)
h2 = draw_heatmap(dat[cg2,],Group)
h3 = draw_heatmap(dat[cg3,],Group)

v1 = draw_volcano(DEG1,pkg = 1,logFC_cutoff = logFC_t)
v2 = draw_volcano(DEG2,pkg = 2,logFC_cutoff = logFC_t)
v3 = draw_volcano(DEG3,pkg = 3,logFC_cutoff = logFC_t)

library(patchwork)
(h1   h2   h3) / (v1   v2   v3)  plot_layout(guides = 'collect') &theme(legend.position = "none")
代码语言:r复制
#三大R包差异基因对比

UP=function(df){
  rownames(df)[df$change=="UP"]
}
DOWN=function(df){
  rownames(df)[df$change=="DOWN"]
}

up = intersect(intersect(UP(DEG1),UP(DEG2)),UP(DEG3))
down = intersect(intersect(DOWN(DEG1),DOWN(DEG2)),DOWN(DEG3))
dat = log2(cpm(exp) 1)
hp = draw_heatmap(dat[c(up,down),],Group)

#上调、下调基因分别画维恩图
up_genes = list(Deseq2 = UP(DEG1),
          edgeR = UP(DEG2),
          limma = UP(DEG3))

down_genes = list(Deseq2 = DOWN(DEG1),
          edgeR = DOWN(DEG2),
          limma = DOWN(DEG3))

up.plot <- draw_venn(up_genes,"UPgene")
down.plot <- draw_venn(down_genes,"DOWNgene")

#维恩图拼图,终于搞定

library(patchwork)
#up.plot   down.plot
# 拼图
pca.plot   hp up.plot  down.plot  plot_layout(guides = "collect")
ggsave(paste0(proj,"_heat_ve_pca.png"),width = 15,height = 10)

未去除异常样本的图如下

3 基因富集

取三个R包的交集差异基因做富集分析,注意应该用鼠源的数据库org.Mm.eg.db,kegg中organism = 'mmu',Go中OrgDb= org.Mm.eg.db

代码语言:r复制
rm(list = ls())  
library(clusterProfiler)
library(ggthemes)
library(org.Mm.eg.db)
library(dplyr)
library(ggplot2)
library(stringr)
library(enrichplot)

#(1)输入数据
load("GSE200033_DEG.Rdata")
library(tinyarray)
g = intersect_all(rownames(DEG1)[DEG1$change!="NOT"],
                  rownames(DEG2)[DEG2$change!="NOT"],
                  rownames(DEG3)[DEG3$change!="NOT"])
output <- bitr(g,
             fromType = 'SYMBOL',
             toType = 'ENTREZID',
             OrgDb = 'org.Mm.eg.db')
gene_diff = output$ENTREZID

#(2)富集
ekk <- enrichKEGG(gene = gene_diff,
                  organism = 'mmu')
ekk <- setReadable(ekk,
                   OrgDb = org.Mm.eg.db,
                   keyType = "ENTREZID")
ego <- enrichGO(gene = gene_diff,
                OrgDb= org.Mm.eg.db,
                ont = "ALL",
                readable = TRUE)
#setReadable和readable = TRUE都是把富集结果表格里的基因名称转为symbol
class(ekk)
#> [1] "enrichResult"
#> attr(,"package")
#> [1] "DOSE"

#(3)可视化
p1 <- barplot(ekk)
p2 <- dotplot(ekk)
p1   p2
ggsave(paste0("GSE200033_kegg.png"),width = 15,height = 10)
代码语言:r复制
p3 <- barplot(ego, split = "ONTOLOGY")   
  facet_grid(ONTOLOGY ~ ., space = "free_y",scales = "free_y") 
p4 <- dotplot(ego, split = "ONTOLOGY")   
  facet_grid(ONTOLOGY ~ ., space = "free_y",scales = "free_y") 
p3 p4
ggsave(paste0("GSE200033_go.png"),width = 15,height = 13)

未去除异常样本的富集分析图如下

4 去除异常值 Vs 未去除异常值

KEGG

Go

由此可以看出异常值去除与否,二者差异基因富集的通路并非相同。

PS:补充知识

0 人点赞