1.C 11简介
在2003年C 标准委员会曾经提交了一份技术勘误表(简称TC1),使得C 03这个名字已经取代了C 98称为C 11之前的最新C 标准名称。不过由于C 03(TC1)主要是对C 98标准中的漏洞进行修复,语言的核心部分则没有改动,因此人们习惯性的把两个标准合并称为C 98/03标准。
从C 0x到C 11,C 标准10年磨一剑,第二个真正意义上的标准珊珊来迟。相比于 C 98/03,C 11则带来了数量可观的变化,其中包含了约140个新特性,以及对C 03标准中约600个缺陷的修正,这使得C 11更像是从C 98/03中孕育出的一种新语言。相比较而言,C 11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更强大,而且能提升程序员的开发效率,公司实际项目开发中也用得比较多,所以我们要作为一个重点去学习。
C 11 - cppreference.com
小故事:
1998年是C 标准委员会成立的第一年,本来计划以后每5年视实际需要更新一次标准,C 国际标准委员会在研究C 03的下一个版本的时候,一开始计划是2007年发布,所以最初这个标准叫C 07。但是到06年的时候,官方觉得2007年肯定完不成C 07,而且官方觉得2008年可能也完不成。最后干脆叫C 0x。x的意思是不知道到底能在07还是08还是09年完成。结果2010年的时候也没完成,最后在2011年终于完成了C 标准。所以最终定名为C 11
2.统一的列表初始化
2.1 {}初始化
在C 98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定。比如:
代码语言:javascript复制struct Point
{
int _x;
int _y;
};
int main()
{
int array1[] = { 1, 2, 3, 4, 5 };
int array2[5] = { 0 };
Point p = { 1, 2 };
return 0;
}
C 11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自定义的类型,使用初始化列表时,可添加等号(=),也可不添加
代码语言:javascript复制struct Point
{
int _x;
int _y;
};
int main()
{
int x1 = 1;
int x2{ 2 };
int array1[]{ 1, 2, 3, 4, 5 };
int array2[5]{ 0 };
Point p{ 1, 2 };
// C 11中列表初始化也可以适用于new表达式中
int* pa = new int[4]{ 0 };
return 0;
}
创建对象时也可以使用列表初始化方式调用构造函数初始化
代码语言:javascript复制class Date
{
public:
Date(int year, int month, int day)
:_year(year)
, _month(month)
, _day(day)
{
cout << "Date(int year, int month, int day)" << endl;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
Date d1(2022, 1, 1); // old style
// C 11支持的列表初始化,这里会调用构造函数初始化
Date d2{ 2022, 1, 2 };
Date d3 = { 2022, 1, 3 };
return 0;
}
2.2 std::initializer_list
std::initializer_list的介绍文档:
https://cplusplus.com/reference/initializer_list/initializer_list/
std::initializer_list是什么类型:
代码语言:javascript复制int main()
{
// the type of il is an initializer_list
auto il = { 10, 20, 30 };
cout << typeid(il).name() << endl;
return 0;
}
std::initializer_list使用场景:
std::initializer_list一般是作为构造函数的参数,C 11对STL中的不少容器就增加 std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator=的参数,这样就可以用大括号赋值
代码语言:javascript复制int main()
{
vector<int> v = { 1,2,3,4 };
list<int> lt = { 1,2 };
// 这里{"sort", "排序"}会先初始化构造一个pair对象
map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
// 使用大括号对容器赋值
v = { 10, 20, 30 };
return 0;
}
让模拟实现的vector也支持{}初始化和赋值:
代码语言:javascript复制namespace bit
{
template<class T>
class vector {
public:
typedef T* iterator;
vector(initializer_list<T> l)
{
_start = new T[l.size()];
_finish = _start l.size();
_endofstorage = _start l.size();
iterator vit = _start;
typename initializer_list<T>::iterator lit = l.begin();
while (lit != l.end())
{
*vit = *lit ;
}
//for (auto e : l)
// *vit = e;
}
vector<T>& operator=(initializer_list<T> l) {
vector<T> tmp(l);
std::swap(_start, tmp._start);
std::swap(_finish, tmp._finish);
std::swap(_endofstorage, tmp._endofstorage);
return *this;
}
private:
iterator _start;
iterator _finish;
iterator _endofstorage;
};
}
3.声明
c 11提供了多种简化声明的方式,尤其是在使用模板时
3.1 auto
在C 98中auto是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局部的变量默认就是自动存储类型,所以auto就没什么价值了。C 11中废弃auto原来的用法,将其用于实现自动类型腿断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初始化值的类型
代码语言:javascript复制int main()
{
int i = 10;
auto p = &i;
auto pf = strcpy;
cout << typeid(p).name() << endl;
cout << typeid(pf).name() << endl;
map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
//map<string, string>::iterator it = dict.begin();
auto it = dict.begin();
return 0;
}
3.2 decltype
关键字decltype将变量的类型声明为表达式指定的类型
代码语言:javascript复制// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{
decltype(t1 * t2) ret;
cout << typeid(ret).name() << endl;
}
int main()
{
const int x = 1;
double y = 2.2;
decltype(x * y) ret; // ret的类型是double
decltype(&x) p; // p的类型是int*
cout << typeid(ret).name() << endl;
cout << typeid(p).name() << endl;
F(1, 'a');
return 0;
}
3.3 nullptr
由于C 中NULL被定义成字面量0,这样就可能回带来一些问题,因为0既能指针常量,又能表示整形常量。所以出于清晰和安全的角度考虑,C 11中新增了nullptr,用于表示空指针
代码语言:javascript复制#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
4.范围for循环
请参考:
C 入门---范围for循环_c 范围for循环-CSDN博客
5.智能指针
请关注后续文章
6.STL中一些变化
新容器
用橘色圈起来是C 11中的一些几个新容器,但是实际最有用的是unordered_map和unordered_set
容器中的一些新方法
如果我们再细细去看会发现基本每个容器中都增加了一些C 11的方法,但是其实很多都是用得比较少的。
比如提供了cbegin和cend方法返回const迭代器等等,但是实际意义不大,因为begin和end也是可以返回const迭代器的,这些都是属于锦上添花的操作。
实际上C 11更新后,容器中增加的新方法最后用的插入接口函数的右值引用版本:
https://cplusplus.com/reference/vector/vector/emplace_back/
http://www.cplusplus.com/reference/vector/vector/push_back/
http://www.cplusplus.com/reference/map/map/insert/
https://cplusplus.com/reference/map/map/emplace/
7.右值引用和移动语义
7.1 左值引用和右值引用
传统的C 语法中就有引用的语法,而C 11中新增了的右值引用语法特性,所以从现在开始我们之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名
什么是左值?什么是左值引用?
左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址 可以对它赋值,左值可以出现赋值符号的左边,右值不能出现在赋值符号左边。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左值取别名
代码语言:javascript复制int main()
{
// 以下的p、b、c、*p都是左值
int* p = new int(0);
int b = 1;
const int c = 2;
// 以下几个是对上面左值的左值引用
int*& rp = p;
int& rb = b;
const int& rc = c;
int& pvalue = *p;
return 0;
}
什么是右值?什么是右值引用?
右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值(这个不能是左值引用返回)等等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。右值引用就是对右值的引用,给右值取别名
代码语言:javascript复制int main()
{
double x = 1.1, y = 2.2;
// 以下几个都是常见的右值
10;
x y;
fmin(x, y);
// 以下几个都是对右值的右值引用
int&& rr1 = 10;
double&& rr2 = x y;
double&& rr3 = fmin(x, y);
// 这里编译会报错:error C2106: “=”: 左操作数必须为左值
10 = 1;
x y = 1;
fmin(x, y) = 1;
return 0;
}
需要注意的是右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,且可以取到该位置的地址,也就是说例如:不能取字面量10的地址,但是rr1引用后,可以对rr1取地址,也可以修改rr1。如果不想rr1被修改,可以用const int&& rr1 去引用,是不是感觉很神奇,这个了解一下实际中右值引用的使用场景并不在于此,这个特性也不重要
代码语言:javascript复制int main()
{
double x = 1.1, y = 2.2;
int&& rr1 = 10;
const double&& rr2 = x y;
rr1 = 20;
rr2 = 5.5; // 报错
return 0;
}
7.2 左值引用与右值引用比较
7.2.1 左值引用总结
- 左值引用只能引用左值,不能引用右值
- 但是const左值引用既可引用左值,也可引用右值
int main()
{
// 左值引用只能引用左值,不能引用右值。
int a = 10;
int& ra1 = a; // ra为a的别名
//int& ra2 = 10; // 编译失败,因为10是右值
// const左值引用既可引用左值,也可引用右值。
const int& ra3 = 10;
const int& ra4 = a;
return 0;
}
7.2.2 右值引用总结
- 右值引用只能右值,不能引用左值
- 但是右值引用可以move以后的左值
int main()
{
// 右值引用只能右值,不能引用左值。
int&& r1 = 10;
// error C2440: “初始化”: 无法从“int”转换为“int &&”
// message : 无法将左值绑定到右值引用
int a = 10;
int&& r2 = a;
// 右值引用可以引用move以后的左值
int&& r3 = std::move(a);
return 0;
}
7.3 右值引用使用场景和意义
前面我们可以看到左值引用既可以引用左值和又可以引用右值,那为什么C 11还要提出右值引用呢?是不是化蛇添足呢?下面我们来看看左值引用的短板,右值引用是如何补齐这个短板的!
代码语言:javascript复制namespace bit
{
class string
{
public:
typedef char* iterator;
iterator begin()
{
return _str;
}
iterator end()
{
return _str _size;
}
string(const char* str = "")
:_size(strlen(str))
, _capacity(_size)
{
//cout << "string(char* str)" << endl;
_str = new char[_capacity 1];
strcpy(_str, str);
}
// s1.swap(s2)
void swap(string& s)
{
::swap(_str, s._str);
::swap(_size, s._size);
::swap(_capacity, s._capacity);
}
// 拷贝构造
string(const string& s)
:_str(nullptr)
{
cout << "string(const string& s) -- 深拷贝" << endl;
string tmp(s._str);
swap(tmp);
}
// 赋值重载
string& operator=(const string& s)
{
cout << "string& operator=(string s) -- 深拷贝" << endl;
string tmp(s);
swap(tmp);
return *this;
}
// 移动构造
string(string&& s)
:_str(nullptr)
, _size(0)
, _capacity(0)
{
cout << "string(string&& s) -- 移动语义" << endl;
swap(s);
}
// 移动赋值
string& operator=(string&& s)
{
cout << "string& operator=(string&& s) -- 移动语义" << endl;
swap(s);
return *this;
}
~string()
{
delete[] _str;
_str = nullptr;
}
char& operator[](size_t pos)
{
assert(pos < _size);
return _str[pos];
}
void reserve(size_t n)
{
if (n > _capacity)
{
char* tmp = new char[n 1];
strcpy(tmp, _str);
delete[] _str;
_str = tmp;
_capacity = n;
}
}
void push_back(char ch)
{
if (_size >= _capacity)
{
size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;
reserve(newcapacity);
}
_str[_size] = ch;
_size;
_str[_size] = '