大型语言模型(LLM)相较于传统的语言模型具有更强大的能力,然而在某些情况下,它们仍可能无法提供准确的答案。为了解决大型语言模型在生成文本时面临的一系列挑战,提高模型的性能和输出质量,研究人员提出了一种新的模型架构:检索增强生成(RAG, Retrieval-Augmented Generation)。该架构巧妙地整合了从庞大知识库中检索到的相关信息,并以此为基础,指导大型语言模型生成更为精准的答案,从而显著提升了回答的准确性与深度。
目前 LLM 面临的主要问题有:
- 信息偏差/幻觉: LLM 有时会产生与客观事实不符的信息,导致用户接收到的信息不准确。RAG 通过检索数据源,辅助模型生成过程,确保输出内容的精确性和可信度,减少信息偏差。
- 知识更新滞后性: LLM 基于静态的数据集训练,这可能导致模型的知识更新滞后,无法及时反映最新的信息动态。RAG 通过实时检索最新数据,保持内容的时效性,确保信息的持续更新和准确性。
- 内容不可追溯: LLM 生成的内容往往缺乏明确的信息来源,影响内容的可信度。RAG 将生成内容与检索到的原始资料建立链接,增强了内容的可追溯性,从而提升了用户对生成内容的信任度。
- 领域专业知识能力欠缺: LLM 在处理特定领域的专业知识时,效果可能不太理想,这可能会影响到其在相关领域的回答质量。RAG 通过检索特定领域的相关文档,为模型提供丰富的上下文信息,从而提升了在专业领域内的问题回答质量和深度。
- 推理能力限制: 面对复杂问题时,LLM 可能缺乏必要的推理能力,这影响了其对问题的理解和回答。RAG 结合检索到的信息和模型的生成能力,通过提供额外的背景知识和数据支持,增强了模型的推理和理解能力。
- 应用场景适应性受限: LLM 需在多样化的应用场景中保持高效和准确,但单一模型可能难以全面适应所有场景。RAG 使得 LLM 能够通过检索对应应用场景数据的方式,灵活适应问答系统、推荐系统等多种应用场景。
- 长文本处理能力较弱: LLM 在理解和生成长篇内容时受限于有限的上下文窗口,且必须按顺序处理内容,输入越长,速度越慢。RAG 通过检索和整合长文本信息,强化了模型对长上下文的理解和生成,有效突破了输入长度的限制,同时降低了调用成本,并提升了整体的处理效率。
二、RAG 的工作流程
RAG 是一个完整的系统,其工作流程可以简单地分为数据处理、检索、增强和生成四个阶段:
- 数据处理阶段
- 对原始数据进行清洗和处理。
- 将处理后的数据转化为检索模型可以使用的格式。
- 将处理后的数据存储在对应的数据库中。
- 检索阶段
- 将用户的问题输入到检索系统中,从数据库中检索相关信息。
- 增强阶段
- 对检索到的信息进行处理和增强,以便生成模型可以更好地理解和使用。
- 生成阶段
- 将增强后的信息输入到生成模型中,生成模型根据这些信息生成答案。