【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

2024-08-13 14:25:07 浏览数 (3)

​​​​​​​一、引言

pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks),共计覆盖32万个模型。

今天介绍Audio的第三篇,文本转音频(text-to-audio/text-to-speech),在huggingface库内共有1978个音频分类模型,其中1141个是由facebook生成的不同语言版本,其他公司发布的仅有837个。

二、文本转音频(text-to-audio/text-to-speech)

2.1 概述

文本转音频(TTS),与上一篇音频转文本(STT)是对称技术,给定文本生成语音,实际使用上,更多与语音克隆技术相结合:先通过一段音频(few-show)进行声音克隆,再基于克隆的音色和文本生成语音。应用场景极多,也是人工智能领域最易看到成果的技术,主要应用场景有读文章音乐生成、短视频智能配音、游戏角色智能配音等。

2.2 技术原理

2.2.1 原理概述

当前比较流行的做法还是基于transformer对文本编码与声音编码进行对齐,声音方面先产生一个对数梅尔频谱图,再使用一个额外的神经网络(声码器)转换为波形。

模型类别上,以suno/bark为代表的语音生成和以xtts为代表的声音克隆 语音生成各占据半壁江山,使用比较多的模型如下

2.2.2 语音生成(zero-shot)

  • suno/bark:suno出品,天花板,支持笑容、男女声设定、音乐设定等。支持pipeline
  • 2noise/ChatTTS:国产品牌,突破天花板。不支持pipeline,需要下载项目包
  • BytedanceSpeech/seed-tts-eval:字节出品。不支持pipeline,需要下载项目包
2.2.3 声音克隆 语音生成(few-shot)

  • coqui/XTTS-v2:酷趣青蛙,几秒的语音样本即可完成克隆。支持pipeline生成,但克隆需要使用pypi的TTS包
  • fishaudio/fish-speech-1.2:鱼语,国产,同样几秒的语音样本即可完成克隆。支持pipeline生成,但克隆需要下载项目。

2.3 pipeline参数

2.3.1 pipeline对象实例化参数​​​​​​​

( *args, vocoder = None, sampling_rate = None, **kwargs )

2.3.2 pipeline对象使用参数 ​​​​​​​

  • text_inputsstrList[str])——要生成的文本。
  • forward_paramsdict可选)— 传递给模型生成/转发方法的参数。forward_params始终传递给底层模型。
  • generate_kwargsdict可选generate_config)—用于生成调用的临时参数化字典。
2.3.3 pipeline对象返回参数

  • audionp.ndarray形状(nb_channels, audio_length))——生成的音频波形。
  • samples_rate (int) — 生成的音频波形的采样率。

2.4 pipeline实战

2.4.1 suno/bark-small(默认模型)

pipeline对于text-to-audio/text-to-speech的默认模型是suno/bark-small,使用pipeline时,如果仅设置task=text-to-audio或task=text-to-speech,不设置模型,则下载并使用默认模型。

代码语言:javascript复制
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

import scipy
from IPython.display import Audio
from transformers import pipeline
pipe = pipeline("text-to-speech")
result = pipe("Hello, my dog is cooler than you!")
sampling_rate=result["sampling_rate"]
audio=result["audio"]
print(sampling_rate,audio)
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=audio)
Audio(audio, rate=sampling_rate)

可以将文本转换为语音bark_out.wav。

bark支持对笑声、男女、歌词、强调语气等进行设定,直接在文本添加:

  • [laughter]
  • [laughs]
  • [sighs]
  • [music]
  • [gasps]
  • [clears throat]
  • ...犹豫
  • 歌词
  • 大写以强调单词
  • [MAN][WOMAN]分别使 Bark 偏向男性和女性说话者

同时,pipeline可以指定任意的模型,模型列表参考TTS模型库。

2.4.2 coqui/XTTS-v2语音克隆

参考官方文档:可以使用python或命令行2种方式轻松使用model_list内的模型,优先要安装TTS的pypi包:

代码语言:javascript复制
pip install TTS -i https://mirrors.cloud.tencent.com/pypi/simple

2.4.2.1 语音转换(参考语音,将语音生成语音)

python版本:

代码语言:javascript复制
import torch
from TTS.api import TTS

# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"

# List available 


	

0 人点赞