文中涉及到大量的Pytorch的C 源码,版本为1.4.0a,适合有一定Pytorch源码基础的童鞋观看,同时也涉及到一些python中的C/C 拓展的一些基础知识,其中每一段代码的第一行表明了该代码的文件位置。需要注意有些代码是自动生成的,原始工程中并没有,需要编译。
还要注意一点,因为Pytorch仍在积极开发中,所以代码接口变化还是比较频繁,当你看到本文的时候,有可能展示的源码与master版的略有不同,但是大部分的代码逻辑变动不大,我们只需要知道核心工作原理即可。
那开始吧!
现在有一个Tensor,不,是两个,创建两个rand后的tensor然后加起来。
代码语言:javascript复制import torch
res = torch.rand(3, 4)[0] torch.rand(3, 4)
执行后输出:
代码语言:javascript复制tensor([[0.3091, 0.5503, 1.0780, 0.9044],
[0.5770, 0.5245, 0.3225, 1.4672],
[0.1581, 1.0439, 0.3313, 0.9924]])
呃,输出不重要,先将上述代码细分下:
代码语言:javascript复制_t1 = torch.rand(3, 4)
_t2 = _t1.__getitem__(0)
del _t1
_t3 = torch.rand(3, 4)
res = _t2.__add__(_t3)
del _t2
del _t3
# 最后res还在
看第一句发生了什么:
代码语言:javascript复制_t1 = torch.rand(3, 4) # <--
_t2 = _t1.__getitem__(0)
del _t1
_t3 = torch.rand(3, 4)
res = _t2.__add__(_t3)
del _t2
del _t3
其实torch.rand
在torch_C._VariableFunctions
这个模块中,torch.rand
不是一个python的函数,只是一个模块中方法的名称,通过torch.rand
调用torch
模块中的rand
方法,而这个模块是通过python的C/C 拓展机制生成的,实际中torch.rand
对应的代码是通过一个yaml文本自动生成的。
这个文件是一个自动生成代码函数的参数列表,Pytorch源码中有很多的代码文件是通过gen.py
自动生成的,至于为什么要自动生成,是因为很多的函数代码比较相似,重复性较多,通过自动生成可以避免大部分重复的工作量。
// aten/src/ATen/native/native_functions.yaml
- func: scalar_tensor(Scalar s, *, ScalarType? dtype=None, Layout? layout=None,
Device? device=None, bool? pin_memory=None) -> Tensor
- func: rand(int[] size, *, ScalarType? dtype=None, Layout? layout=None,
Device? device=None, bool? pin_memory=None) -> Tensor
- func: rand(int[] size, *, Generator? generator, ScalarType? dtype=None,
Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
- func: rand(int[] size, *, Tensor(a!) out) -> Tensor(a!)
- func: rand(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
- func: rand_like(Tensor self) -> Tensor
- func: rand_like(Tensor self, *, ScalarType dtype, Layout layout,
Device device, bool pin_memory=False) -> Tensor
通过上述的自动生成代码文件,在如下的代码的${py_method_defs}
的位置生成rand
以及其他函数的方法。
// tools/autograd/templates/python_torch_functions.cpp
static PyMethodDef torch_functions[] = {
{"arange", (PyCFunction)THPVariable_arange, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"as_tensor", (PyCFunction)THPVariable_as_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"dsmm", (PyCFunction)THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"from_numpy", (PyCFunction)THPVariable_from_numpy, METH_STATIC | METH_O, NULL},
{"hsmm", (PyCFunction)THPVariable_hspmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"_promote_types", (PyCFunction)THPVariable__promote_types, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"nonzero", (PyCFunction)THPVariable_nonzero, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"randint", (PyCFunction)THPVariable_randint, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"range", (PyCFunction)THPVariable_range, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"saddmm", (PyCFunction)THPVariable_sspaddmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sparse_coo_tensor", (PyCFunction)THPVariable_sparse_coo_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"spmm", (PyCFunction)THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tensor", (PyCFunction)THPVariable_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"get_device", (PyCFunction)THPVariable_get_device, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
${py_method_defs}
{NULL}
};
将上述的native_functions.yaml
中的函数参数通过生成机制,在上述代码的${py_method_defs}
位置,生成新的代码以及新的文件,我们可以看到我们的"rand"
:
//torch/csrc/autograd/generated/python_torch_functions.cpp
static PyMethodDef torch_functions[] = {
{"arange", (PyCFunction)(void(*)(void))THPVariable_arange, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"as_tensor", (PyCFunction)(void(*)(void))THPVariable_as_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"dsmm", (PyCFunction)(void(*)(void))THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"from_numpy", (PyCFunction)THPVariable_from_numpy, METH_STATIC | METH_O, NULL},
{"hsmm", (PyCFunction)(void(*)(void))THPVariable_hspmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"nonzero", (PyCFunction)(void(*)(void))THPVariable_nonzero, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"randint", (PyCFunction)(void(*)(void))THPVariable_randint, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"range", (PyCFunction)(void(*)(void))THPVariable_range, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"saddmm", (PyCFunction)(void(*)(void))THPVariable_sspaddmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"sparse_coo_tensor", (PyCFunction)(void(*)(void))THPVariable_sparse_coo_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"spmm", (PyCFunction)(void(*)(void))THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"tensor", (PyCFunction)(void(*)(void))THPVariable_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"get_device", (PyCFunction)(void(*)(void))THPVariable_get_device, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
// 这部分以上与上面的代码相同,下面为自动生成的代码
{"numel", (PyCFunction)(void(*)(void))THPVariable_numel, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"__and__", (PyCFunction)(void(*)(void))THPVariable___and__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
...
{"quantized_rnn_tanh_cell", (PyCFunction)(void(*)(void))THPVariable_quantized_rnn_tanh_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"rand", (PyCFunction)(void(*)(void))THPVariable_rand, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"rand_like", (PyCFunction)(void(*)(void))THPVariable_rand_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"randint_like", (PyCFunction)(void(*)(void))THPVariable_randint_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"randn", (PyCFunction)(void(*)(void))THPVariable_randn, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"randn_like", (PyCFunction)(void(*)(void))THPVariable_randn_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"randperm", (PyCFunction)(void(*)(void))THPVariable_randperm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
...
{"zeros", (PyCFunction)(void(*)(void))THPVariable_zeros, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{"zeros_like", (PyCFunction)(void(*)(void))THPVariable_zeros_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL},
{NULL}
};
由上面代码可以看到,"rand"
对应的绑定函数为THPVariable_rand
。具体探究这个函数之前,我们首先需要初始化,因为这个函数要绑定在python端,将上述的一堆方法(tp_methods)与类型对象(PyTypeObject)绑定:
// tools/autograd/templates/python_torch_functions.cpp
static PyTypeObject THPVariableFunctions = {
PyVarObject_HEAD_INIT(NULL, 0)
"torch._C._VariableFunctions", /* tp_name */
Py_TPFLAGS_DEFAULT, /* tp_flags */
NULL, /* tp_doc */
torch_functions, /* tp_methods */
...
};
然后进行初始化,将上述的类型对象初始化为python中的模块:
代码语言:javascript复制void initTorchFunctions(PyObject* module) {
if (PyType_Ready(&THPVariableFunctions) < 0) {
throw python_error();
}
Py_INCREF(&THPVariableFunctions);
if (PyModule_AddObject(module, "_VariableFunctions", (PyObject*)&THPVariableFunctions) < 0) {
throw python_error();
}
}
这样我们在python端调用的时候会在生成的torch_C._VariableFunctions
中找这个方法:
for name in dir(_C._VariableFunctions):
if name.startswith('__'):
continue
globals()[name] = getattr(_C._VariableFunctions, name)
好,现在我们具体讨论一下{"rand", (PyCFunction)(void(*)(void))THPVariable_rand, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}
这个方法对应的函数吧。
// torch/csrc/autograd/generated/python_torch_functions.cpp
static PyObject * THPVariable_rand(PyObject* self_, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"rand(IntArrayRef size, *, DimnameList? names, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)",
"rand(IntArrayRef size, *, Generator generator, DimnameList? names, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)",
"rand(IntArrayRef size, *, Generator generator, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)",
"rand(IntArrayRef size, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)",
}, /*traceable=*/true);
ParsedArgs<9> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
auto size = r.intlist(0);
auto __names = r.toDimnameListOptional(1);
c10::optional<DimnameList> names = __names ? c10::make_optional(DimnameList(__names.value())) : c10::nullopt;
auto dtype = r.scalartype(2);
auto device = r.device(4);
const auto options = TensorOptions()
.dtype(dtype)
.device(device)
.layout(r.layout(3).layout)
.requires_grad(r.toBool(6))
.pinned_memory(r.toBool(5));
return wrap(dispatch_rand(size, names, options));
...
} else if (r.idx == 3) { // 最终执行到这一个分支
if (r.isNone(1)) {
auto size = r.intlist(0);
auto dtype = r.scalartype(2);
auto device = r.device(4);
const auto options = TensorOptions()
.dtype(dtype)
.device(device)
.layout(r.layout(3).layout)
.requires_grad(r.toBool(6))
.pinned_memory(r.toBool(5));
return wrap(dispatch_rand(size, options));
} else {
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2),
r.layout(3), r.isNone(3),
r.device(4), r.isNone(4));
return wrap(dispatch_rand(r.intlist(0), r.tensor(1)).set_requires_grad(r.toBool(6)));
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
可以看到上述函数最终实际执行的是dispatch_rand
,这里需要注意,这个函数释放了GIL锁,这会使当前的执行代码和python中执行的代码互不影响:
// torch/csrc/autograd/generated/python_torch_functions_dispatch.h
inline Tensor dispatch_rand(IntArrayRef size, const TensorOptions & options) {
maybe_initialize_cuda(options);
/* 释放GIL锁 */
AutoNoGIL no_gil;
return torch::rand(size, generator, options);
}
然后我们进入torch::rand
,这里有一点需要注意,在torch::rand
这个函数中我们最终返回的是autograd::make_variable
后的tensor,也就是说如果我们不需要differentiable的tensor的话,是可以直接返回at::rand
。
这也就是为什么在Pytorch的C 前端中提到如果直接使用at::rand
构造的Tensor是没有自动求导功能的:
// torch/csrc/autograd/generated/variable_factories.h
inline at::Tensor rand(at::IntArrayRef size, const at::TensorOptions & options = {}) {
torch::jit::Node* node = nullptr;
std::shared_ptr<jit::tracer::TracingState> tracer_state;
if (jit::tracer::isTracing()) { // 这个分支不会进入,因为我们并没有使用Jit
tracer_state = jit::tracer::getTracingState();
at::Symbol op_name;
op_name = jit::Symbol::fromQualString("aten::rand");
node = tracer_state->graph->create(op_name, /*num_outputs=*/0);
jit::tracer::recordSourceLocation(node);
jit::tracer::addInputs(node, "size", size);
jit::tracer::addInputs(node, "options", options);
tracer_state->graph->insertNode(node);
jit::tracer::setTracingState(nullptr);
}
at::Tensor tensor = ([&]() {
at::AutoNonVariableTypeMode non_var_type_mode(true);
return at::rand(size, at::TensorOptions(options).is_variable(false));
})();
at::Tensor result =
autograd::make_variable(std::move(tensor), /*requires_grad=*/options.requires_grad());
if (tracer_state) {
jit::tracer::setTracingState(std::move(tracer_state));
jit::tracer::addOutput(node, result);
}
return result;
}
然后我们继续进入at::rand
:
// build/aten/src/ATen/Functions.h
static inline Tensor rand(IntArrayRef size, const TensorOptions & options) {
#ifdef USE_STATIC_DISPATCH
return TypeDefault::rand(size, options);
#else // 从以下开始执行
globalLegacyTypeDispatch().initForTensorTypeSet(at::detail::multi_dispatch_tensor_type_set(options));
static auto table = globalATenDispatch().getOpTable("aten::rand(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor");
return table->callUnboxed<Tensor, IntArrayRef, const TensorOptions &>(size, options);
#endif
}
我们可以看到上述的代码中getOpTable
函数的参数是我们具体调用函数的一些string,也就是说getOpTable
方法可以根据字符串类型的表示找到相对应的函数,我们先看看globalATenDispatch()
是什么:
// aten/src/ATen/core/ATenDispatch.cpp
// 像不像单例?
ATenDispatch & globalATenDispatch() {
static ATenDispatch singleton;
return singleton;
}
很像设计模式中的单例模式吧?那ATenDispatch
又是什么?看到registerOp
这个方法没,多么的熟悉啊,显然这是一个op注册机制的类。
// aten/src/ATen/core/ATenDispatch.h
class CAFFE2_API ATenDispatch {
public:
template<class FuncType>
ATenDispatch& registerOp(TensorTypeId id, const char* schema, FuncType* fn) {
std::lock_guard<std::mutex> lock(mutex_);
if (op_tables_.find(schema) == op_tables_.end()) {
op_tables_.insert(std::make_pair(schema, ATenOpTable(schema)));
}
op_tables_.at(schema).registerOp(id, reinterpret_cast<void*>(fn));
return *this;
}
ATenDispatch& registerFallbackBoxedOp(TensorTypeId id, FallbackBoxedFunction* fn) {
std::lock_guard<std::mutex> lock(mutex_);
boxed_fallback_table_[static_cast<size_t>(id)] = fn;
return *this;
}
const ATenOpTable* getOpTable(const char* schema) const {
auto iter = op_tables_.find(schema);
TORCH_CHECK(iter != op_tables_.end(),
"No functions are registered for schema ", schema);
return &iter->second;
}
FallbackBoxedFunction* getFallbackBoxedOp(TensorTypeId tid) const {
return boxed_fallback_table_[static_cast<size_t>(tid)];
}
private:
std::unordered_map<std::string, ATenOpTable> op_tables_;
FallbackBoxedFunction* boxed_fallback_table_[static_cast<int64_t>(TensorTypeId::NumTensorIds)] = {nullptr};
std::mutex mutex_;
};
那么与std::string
组成map的ATenOpTable
又是什么呢?下面的介绍已经比较清楚了,这个类储存了不同backend下的实现方法,同时也可以应用于Variables。
// ATenOpTable stores the implementations for each backend, in addition to
// an implementation for variables.
// aten/src/ATen/core/ATenDispatch.h
class CAFFE2_API ATenOpTable {
public:
ATenOpTable(std::string schema)
: schema_(std::move(schema)) {}
// NB: No universal forwarding
template<class Result, class... Args>
Result callUnboxed(Args... args) const;
private:
void registerOp(TensorTypeId tid, void* fn) {
TORCH_CHECK(function_table_[static_cast<int64_t>(tid)] == nullptr,
"Attempting to register function for schema ", schema_,
" and tensor type ", toString(tid),
" but there is already a function registered");
function_table_[static_cast<int64_t>(tid)] = fn;
}
C10_NORETURN void reportError(TensorTypeId tid) const;
friend class ATenDispatch;
std::string schema_;
void* function_table_[static_cast<int64_t>(TensorTypeId::NumTensorIds)] = {nullptr};
};
好了,回到上面rand
函数中的最后一句return table->callUnboxed<Tensor, IntArrayRef, const TensorOptions &>(size, options);
。我们可以看到table就是ATenOpTable
类的一个实例,而callUnboxed
是它的一个方法,这个方法根据传递的模板参数返回了特定的函数:
// build/aten/src/ATen/TypeDefault.cpp
Tensor rand(IntArrayRef size, const TensorOptions & options) {
const DeviceGuard device_guard(options.device());
return at::native::rand(size, options);
}
进入at::native::rand
:
// aten/src/ATen/native/TensorFactories.cpp
Tensor rand(IntArrayRef size, const TensorOptions& options) {
return native::rand(size, nullptr, options);
}
进入native::rand
:
// aten/src/ATen/native/TensorFactories.cpp
Tensor rand(IntArrayRef size, Generator* generator, const TensorOptions& options) {
auto result = at::empty(size, options);
return result.uniform_(0, 1, generator);
}
进入at::empty
:
// build/aten/src/ATen/Functions.h
static inline Tensor empty(IntArrayRef size, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) {
#ifdef USE_STATIC_DISPATCH
switch(tensorTypeIdToBackend(impl::dispatchTypeId(at::detail::multi_dispatch_tensor_type_set(options)))) {
case Backend::CPU:
return CPUType::empty(size, options, memory_format);
break;
case Backend::SparseCPU:
return SparseCPUType::empty(size, options, memory_format);
break;
default:
AT_ERROR("empty not implemented for ", at::toString(at::detail::multi_dispatch_tensor_type_set(options)));
}
#else
globalLegacyTypeDispatch().initForTensorTypeSet(at::detail::multi_dispatch_tensor_type_set(options));
static auto table = globalATenDispatch().getOpTable("aten::empty.memory_format(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor");
return table->callUnboxed<Tensor, IntArrayRef, const TensorOptions &, c10::optional<MemoryFormat>>(size, options, memory_format);
#endif
}
这次继续按照之前的方式来找到"aten::empty.memory_format(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor"
这个op。需要注意这个op函数也是自动生成的,对应不同的backend。
// aten/src/ATen/native/native_functions.yaml
- func: empty.memory_format(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
dispatch:
CPU: empty_cpu
CUDA: empty_cuda
MkldnnCPU: empty_mkldnn
SparseCPU: empty_sparse
SparseCUDA: empty_sparse
所以最终table中Unbox后的函数为:
代码语言:javascript复制// build/aten/src/ATen/CPUType.cpp
Tensor empty(IntArrayRef size, const TensorOptions & options, c10::optional<MemoryFormat> memory_format) {
const DeviceGuard device_guard(options.device());
return at::native::empty_cpu(size, options, memory_format);
}
我们进入at::native::empty_cpu
。
// aten/src/ATen/native/TensorFactories.cpp
Tensor empty_cpu(IntArrayRef size, const TensorOptions& options, c10::optional<c10::MemoryFormat> optional_memory_format) {
AT_ASSERT(options.device().type() == DeviceType::CPU);
AT_ASSERT(!options.is_variable()); // is_variable should have been 'unpacked' // TODO: remove this when Variable and Tensor are merged
check_size_nonnegative(size);
c10::Allocator* allocator;
if (options.pinned_memory()) {
allocator = detail::getCUDAHooks().getPinnedMemoryAllocator();
} else {
allocator = at::getCPUAllocator(); // 执行这句
}
int64_t nelements = prod_intlist(size);
auto dtype = options.dtype();
auto storage_impl = c10::make_intrusive<StorageImpl>(
dtype,
nelements,
allocator->allocate(nelements * dtype.itemsize()),
allocator,
/*resizeable=*/true);
auto tensor = detail::make_tensor<TensorImpl>(std::move(storage_impl), at::TensorTypeId::CPUTensorId);
// Default TensorImpl has size [0]
if (size.size() != 1 || size[0] != 0) {
tensor.unsafeGetTensorImpl()->set_sizes_contiguous(size);
}
auto memory_format = optional_memory_format.value_or(MemoryFormat::Contiguous);
tensor.unsafeGetTensorImpl()->empty_tensor_restride(memory_format);
return tensor;
}
这个时候因为我们调用的是CPU版的empty,这时需要在CPU申请空间,首先得到正确的申请空间的“方法”函数,赋予c10::Allocator*
:
先是这个:
代码语言:javascript复制// aten/src/ATen/Context.cpp
Allocator* getCPUAllocator() {
return getTHDefaultAllocator();
}
深入:
代码语言:javascript复制// aten/src/TH/THAllocator.cpp
at::Allocator* getTHDefaultAllocator() {
return c10::GetCPUAllocator();
}
再深入:
代码语言:javascript复制// c10/core/CPUAllocator.cpp
at::Allocator* GetCPUAllocator() {
return GetAllocator(DeviceType::CPU);
}
再深入,可以发现这个allocator是allocator_array
中的一个,在下面的函数GetAllocator
中根据索引标号来取出:
// c10/core/Allocator.cpp
at::Allocator* GetAllocator(const at::DeviceType& t) {
auto* alloc = allocator_array[static_cast<int>(t)];
AT_ASSERTM(alloc, "Allocator for ", t, " is not set.");
return alloc;
}
allocator_array
这个东西是怎么来的?其实它是一个全局变量,用来储存各种allocator,同时配备了SetAllocator
和GetAllocator
来设置和获取相应的分配器:
// c10/core/Allocator.cpp
C10_API at::Allocator* allocator_array[at::COMPILE_TIME_MAX_DEVICE_TYPES];
// 通过SetAllocator函数将设备的类型索引与alloc联系成一个哈希表
void SetAllocator(at::DeviceType t, at::Allocator* alloc) {
allocator_array[static_cast<int>(t)] = alloc;
}
然后使用REGISTER_ALLOCATOR
来注册这些alloc。
// c10/core/Allocator.h
template <DeviceType t>
struct AllocatorRegisterer {
explicit AllocatorRegisterer(Allocator* alloc) {
SetAllocator(t, alloc);
}
};
#define REGISTER_ALLOCATOR(t, f)
namespace {
static AllocatorRegisterer<t> g_allocator_d(f);
}
比如,把DefaultCPUAllocator
注册为DeviceType::CPU
,而DeviceType::CPU
就是枚举成员,对应着一个数字。
// c10/core/CPUAllocator.cpp
static DefaultCPUAllocator g_cpu_alloc;
REGISTER_ALLOCATOR(DeviceType::CPU, &g_cpu_alloc);
而DefaultCPUAllocator
就是我们在CPU中开辟空间实际要调用的alloc类,它继承了at::Allocator
:
// c10/core/CPUAllocator.cpp
struct C10_API DefaultCPUAllocator final : at::Allocator {
DefaultCPUAllocator() {}
~DefaultCPUAllocator() override {}
at::DataPtr allocate(size_t nbytes) const override {
void* data = alloc_cpu(nbytes);
if (FLAGS_caffe2_report_cpu_memory_usage && nbytes > 0) {
getMemoryAllocationReporter().New(data, nbytes);
return {data, data, &ReportAndDelete, at::Device(at::DeviceType::CPU)};
}
return {data, data, &free_cpu, at::Device(at::DeviceType::CPU)};
}
static void ReportAndDelete(void* ptr) {
if (!ptr) {
return;
}
getMemoryAllocationReporter().Delete(ptr);
free_cpu(ptr);
}
at::DeleterFnPtr raw_deleter() const override {
if (FLAGS_caffe2_report_cpu_memory_usage) {
return &ReportAndDelete;
}
return &free_cpu;
}
protected:
static MemoryAllocationReporter& getMemoryAllocationReporter() {
static MemoryAllocationReporter reporter_;
return reporter_;
}
};
其中实际的开辟函数alloc_cpu
和free_cpu
,这两个函数在开辟空间和删除空间的时候会被调用:
// c10/core/CPUAllocator.cpp
void* alloc_cpu(size_t nbytes) {
if (nbytes == 0) {
return nullptr;
}
// We might have clowny upstream code that tries to alloc a negative number
// of bytes. Let's catch it early.
CAFFE_ENFORCE(
((ptrdiff_t)nbytes) >= 0,
"alloc_cpu() seems to have been called with negative number: ", nbytes);
void* data;
#ifdef __ANDROID__
data = memalign(gAlignment, nbytes);
#elif defined(_MSC_VER)
data = _aligned_malloc(nbytes, gAlignment);
#else
int err = posix_memalign(&data, gAlignment, nbytes);
if (err != 0) {
CAFFE_THROW(
"DefaultCPUAllocator: can't allocate memory: you tried to allocate ",
nbytes,
" bytes. Error code ",
err,
" (",
strerror(err),
")");
}
#endif
CAFFE_ENFORCE(
data,
"DefaultCPUAllocator: not enough memory: you tried to allocate ",
nbytes,
" bytes. Buy new RAM!");
// move data to a thread's NUMA node
NUMAMove(data, nbytes, GetCurrentNUMANode());
CHECK(
!FLAGS_caffe2_cpu_allocator_do_zero_fill ||
!FLAGS_caffe2_cpu_allocator_do_junk_fill)
<< "Cannot request both zero-fill and junk-fill at the same time";
if (FLAGS_caffe2_cpu_allocator_do_zero_fill) {
memset(data, 0, nbytes);
} else if (FLAGS_caffe2_cpu_allocator_do_junk_fill) {
memset_junk(data, nbytes);
}
return data;
}
void free_cpu(void* data) {
#ifdef _MSC_VER
_aligned_free(data);
#else
free(data);
#endif
}
接着继续回到at::native::empty_cpu
,因为empty_cpu要构建tensor变量,而tensor变量首先需要对应的storage,也就是Tensor中的实际储存的地址,而StorageImpl
是继承intrusive_ptr_target
的一个子类。实际代码中通过c10::make_intrusive
构建出storage_impl
:
Tensor empty_cpu(IntArrayRef size, const TensorOptions& options) {
......
int64_t nelements = prod_intlist(size);
auto dtype = options.dtype();
auto storage_impl = c10::make_intrusive<StorageImpl>(
dtype,
nelements,
allocator->allocate(nelements * dtype.itemsize()),
allocator,
/*resizeable=*/true);
make_intrusive
是模板元函数,其中TTarget
即传递过来的StorageImpl
类,而在函数参数位置中的Args&&... args
对应模板中的class... Args
,为变长参数列表,将c10::make_intrusive<StorageImpl>( dtype, nelements, allocator->allocate(nelements * dtype.itemsize()), allocator, /*resizeable=*/true);
中的函数参数通过Args
传递过来变为args
。
// c10/util/intrusive_ptr.h
template <
class TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>,
class... Args>
inline intrusive_ptr<TTarget, NullType> make_intrusive(Args&&... args) {
return intrusive_ptr<TTarget, NullType>::make(std::forward<Args>(args)...);
}
通过make函数最终返回一个用intrusive_ptr
包裹的TTarget
类型的类,其中TTarget
就是StorageImpl
:
template <class... Args>
static intrusive_ptr make(Args&&... args) {
auto result = intrusive_ptr(new TTarget(std::forward<Args>(args)...));
// We can't use retain_(), because we also have to increase weakcount
// and because we allow raising these values from 0, which retain_()
// has an assertion against.
result.target_->refcount_;
result.target_->weakcount_;
return result;
}
intrusive_ptr
是一个智能指针,与intrusive_ptr_target
配合,只有继承intrusive_ptr_target
的类才可以使用intrusive_ptr<T>
,与shared_ptr<T>
不同,intrusive_ptr<T>
不会陷入循环计数的怪圈。
// c10/util/intrusive_ptr.h
template <
class TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>>
class intrusive_ptr final {
public:
intrusive_ptr(const intrusive_ptr& rhs) : target_(rhs.target_) {
retain_();
}
~intrusive_ptr() noexcept {
reset_();
}
private:
TTarget* target_;
void retain_() {
size_t new_refcount = target_->refcount_;
}
void reset_() noexcept {
if (target_ != NullType::singleton() && --target_->refcount_ == 0) {
auto weak_count = --target_->weakcount_;
const_cast<c10::guts::remove_const_t<TTarget>*>(target_)->release_resources();
if (weak_count == 0) {
delete target_;
}
}
intrusive_ptr_target
不会循环计数的两个核心成员变量,支持原子操作。
class C10_API intrusive_ptr_target {
mutable std::atomic<size_t> refcount_;
mutable std::atomic<size_t> weakcount_;
显然StorageImpl
继承自intrusive_ptr_target
:
// c10/core/StorageImpl.h
struct C10_API StorageImpl final : public c10::intrusive_ptr_target {
public:
StorageImpl(caffe2::TypeMeta data_type, int64_t numel, at::DataPtr data_ptr,
at::Allocator* allocator, bool resizable);
private:
caffe2::TypeMeta data_type_; // 数据类型
DataPtr data_ptr_; // 指向存储数据的内存块
int64_t numel_; // 数据总数
bool resizable_;
bool received_cuda_;
Allocator* allocator_; // 内存分配器
可以看到实际的数据块的类型为DataPtr
,其中包含了删除器以及当前数据的设备信息。
// c10/core/Allocator.h
class C10_API DataPtr {
private:
c10::detail::UniqueVoidPtr ptr_;
Device device_;
public:
DataPtr() : ptr_(), device_(DeviceType::CPU) {}
DataPtr(void* data, Device device) : ptr_(data), device_(device) {}
DataPtr(void* data, void* ctx, DeleterFnPtr ctx_deleter, Device device)
: ptr_(data, ctx, ctx_deleter), device_(device) {}
再看其中的UniqueVoidPtr
,这个ptr类似于unique_ptr
,但还是有几点不同的地方,例如该指针只针对void类型。
// c10/util/UniqueVoidPtr.h
class UniqueVoidPtr {
private:
// Lifetime tied to ctx_
void* data_;
std::unique_ptr<void, DeleterFnPtr> ctx_;
public:
UniqueVoidPtr() : data_(nullptr), ctx_(nullptr, &deleteNothing) {}
explicit UniqueVoidPtr(void* data)
: data_(data), ctx_(nullptr, &deleteNothing) {}
UniqueVoidPtr(void* data, void* ctx, DeleterFnPtr ctx_deleter)
: data_(data), ctx_(ctx, ctx_deleter ? ctx_deleter : &deleteNothing) {}
void* operator->() const {
return data_;
}
void clear() {
ctx_ = nullptr;
data_ = nullptr;
}
…
回到empty_cpu,在初始化storage_impl
后开始构建TensorImpl
,通过make_tensor
传递Tensor的类型以及相关函数参数:
// aten/src/ATen/native/TensorFactories.cpp
Tensor empty_cpu(IntArrayRef size, const TensorOptions& options) {
......
auto tensor = detail::make_tensor<TensorImpl>(storage_impl, at::CPUTensorId());
make_tensor
函数中返回Tensor
类,从而构造了一个Tensor。
// build/aten/src/ATen/core/TensorBody.h
template <typename T, typename... Args>
Tensor make_tensor(Args&&... args) {
return Tensor(c10::make_intrusive<T>(std::forward<Args>(args)...));
}
这个Tensor是一个通用的对象,包含一个指向TensorImpl
对象的指针,实际开辟的空间位置指针还在TensorImpl
中的storage_
中。
// build/aten/src/ATen/core/TensorBody.h
class CAFFE2_API Tensor {
protected:
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> impl_;
public:
int64_t dim() const {
return impl_->dim();
}
int64_t storage_offset() const {
return impl_->storage_offset();
}
Tensor abs() const;
Tensor& abs_();
Tensor add(const Tensor & other, Scalar alpha=1) const;
TensorImpl
类也是继承了intrusive_ptr_target
,拥有智能指针的功能。
// c10/core/TensorImpl.h
struct C10_API TensorImpl : public c10::intrusive_ptr_target {
public:
virtual int64_t dim() const;
virtual int64_t storage_offset() const;
private:
Storage storage_;
#ifdef NAMEDTENSOR_ENABLED
std::unique_ptr<c10::NamedTensorMetaInterface> named_tensor_meta_ = nullptr;
#endif
c10::VariableVersion version_counter_;
PyObject* pyobj_ = nullptr; // weak reference
SmallVector<int64_t,5> sizes_;
SmallVector<int64_t,5> strides_;
int64_t storage_offset_ = 0;
int64_t numel_ = 1;
caffe2::TypeMeta data_type_;
c10::optional<c10::Device> device_opt_;
TensorTypeId type_id_;
bool is_contiguous_ = true;
bool is_wrapped_number_ = false;
bool allow_tensor_metadata_change_ = true;
bool reserved_ = false;
...
再回顾一下创建Tensor时实际涉及到的类:
代码语言:javascript复制class CAFFE2_API Tensor {
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> impl_;
...
struct C10_API TensorImpl : public c10::intrusive_ptr_target {
Storage storage_;
...
struct C10_API Storage {
protected:
c10::intrusive_ptr<StorageImpl> storage_impl_;
...
struct C10_API StorageImpl final : public c10::intrusive_ptr_target {
DataPtr data_ptr_;
...
class C10_API DataPtr {
c10::detail::UniqueVoidPtr ptr_;
...
class UniqueVoidPtr {
std::unique_ptr<void, DeleterFnPtr> ctx_;
...
接下来回到rand
,在通过at::empty
构造出empty的Tensor后需要使用uniform_
对其进行初始化。
// aten/src/ATen/native/TensorFactories.cpp
Tensor rand(IntArrayRef size, Generator* generator, const TensorOptions& options) {
auto result = at::empty(size, options);
return result.uniform_(0, 1, generator);
}
Tensor::uniform_
是Tensor类中的一个方法,实现对Tensor中数据的操作。
// build/aten/src/ATen/core/TensorMethods.h
inline Tensor & Tensor::uniform_(double from, double to, Generator * generator) const {
static c10::OperatorHandle op = c10::Dispatcher::singleton().findSchema({"aten::uniform_", ""}).value();
return c10::Dispatcher::singleton().callUnboxedOnly<Tensor &, Tensor &, double, double, Generator *>(
op, impl::dispatchTypeId(at::detail::multi_dispatch_tensor_type_set(*this)), const_cast<Tensor&>(*this), from, to, generator);
}
但是Tensor::uniform_
实际调用的函数是找到通过注册机制注册好的函数,这个函数是在编译的过程中按照native_functions.yaml
文件中的指示代码生成。
可以看到,在native_functions.yaml
中的函数uniform_
还对应了两个不同平台(CPU和GPU)的方法,这里我们主要看legacy::cpu::_th_uniform_
// aten/src/ATen/native/native_functions.yaml
- func: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)
variants: method
dispatch:
CPU: legacy::cpu::_th_uniform_
CUDA: uniform_cuda_
生成的代码如下,也就是callUnboxedOnly
中根据模板元参数和函数参数实际返回并执行的函数:
// build/aten/src/ATen/CPUType.cpp
Tensor & uniform_(Tensor & self, double from, double to, Generator * generator) {
const OptionalDeviceGuard device_guard(device_of(self));
return at::native::legacy::cpu::_th_uniform_(self, from, to, generator);
}
其中at::native::legacy::cpu::_th_uniform_
是自动生成的代码,生成规则如下:
// aten/src/ATen/Declarations.cwrap
name: _th_uniform_
types:
- floating_point
backends:
- CPU
cname: uniform
variants: function
return: self
arguments:
- THTensor* self
- double from
- double to
- THGenerator* generator
进入at::native::legacy::cpu::_th_uniform_
,显然默然会选择ScalarType::Float
这个分支:
// build/aten/src/ATen/LegacyTHFunctionsCPU.cpp
Tensor & _th_uniform_(Tensor & self, double from, double to, Generator * generator) {
#ifdef BUILD_NAMEDTENSOR
#endif
// DeviceGuard omitted
auto dispatch_scalar_type = infer_scalar_type(self);
switch (dispatch_scalar_type) {
case ScalarType::Double: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_uniform_", false, DeviceType::CPU, ScalarType::Double);
THDoubleTensor_uniform(self_, from, to, generator);
return self;
break;
}
case ScalarType::Float: {
auto self_ = checked_dense_tensor_unwrap(self, "self", 1, "_th_uniform_", false, DeviceType::CPU, ScalarType::Float);
THFloatTensor_uniform(self_, from, to, generator);
return self;
break;
}
default:
AT_ERROR("_th_uniform_ not supported on CPUType for ", dispatch_scalar_type);
}
}
需要注意Pytorch中使用C语言的宏定义语法实现了多态,上述的THFloatTensor_uniform
对应通过宏定义展开的函数,也就是下面的函数在编译过程中通过宏定义的方式展开生成THFloatTensor_uniform
,具体的解释可以看这里。
而下面这个函数中的TH_TENSOR_APPLY
类似于map函数,对Tensor中每一个元素执行该操作,具体这里不进行深入。
void THTensor_(uniform)(THTensor *self, double a, double b, at::Generator *_generator)
{
auto gen = at::get_generator_or_default<at::CPUGenerator>(_generator, at::detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
#if defined(TH_REAL_IS_FLOAT)
at::uniform_real_distribution<float> uniform((float)a, (float)b);
TH_TENSOR_APPLY(scalar_t, self, *self_data = (scalar_t)uniform(gen););
#else
at::uniform_real_distribution<double> uniform(a, b);
TH_TENSOR_APPLY(scalar_t, self, *self_data = (scalar_t)uniform(gen););
#endif
}
紧接着进行下一步,在对Tensor初始化之后,我们该执行torch.rand(3, 4)[0]
这一步中最后的索引[0]
操作,对应:
_t1 = torch.rand(3, 4)
_t2 = _t1.__getitem__(0) # <--- here
del _t1
_t3 = torch.rand(3, 4)
r = _t2.__add__(_t3)
del _t2
del _t3
剩下的步骤就与之前的原理相同,之后只展示代码流程,就不进行详细描述了:
代码语言:javascript复制# torch/tensor.py
class Tensor(torch._C._TensorBase):
代码语言:javascript复制// torch/csrc/autograd/python_variable.cpp
PyTypeObject THPVariableType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C._TensorBase", /* tp_name */
sizeof(THPVariable), /* tp_basicsize */
(destructor)THPVariable_dealloc, /* tp_dealloc */
&THPVariable_as_mapping, /* tp_as_mapping */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
(traverseproc)THPVariable_traverse, /* tp_traverse */
(inquiry)THPVariable_clear, /* tp_clear */
THPVariable_properties, /* tp_getset */
THPVariable_pynew /* tp_new */
};
代码语言:javascript复制PyObject* THPVariable_getitem(PyObject* self, PyObject* index) {
if (index == Py_None) {
return wrap(self_.unsqueeze(0));
} else if (index == Py_Ellipsis) {
return wrap(at::alias(self_));
} else if (THPUtils_checkLong(index)) {
return wrap(applySelect(self_, 0, THPUtils_unpackLong(index)));
} else if (PySlice_Check(index)) {
return wrap(applySlice(self_, 0, index, true));
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
...
static Variable applySelect(const Variable& self, int64_t dim, int64_t index,
int64_t real_dim=0) {
int64_t size = self.size(dim);
return self.select(dim, index);
}
代码语言:javascript复制// aten/src/ATen/core/TensorMethods.h
inline Tensor Tensor::select(int64_t dim, int64_t index) const {
static auto table = globalATenDispatch().getOpTable("aten::select(Tensor(a) self, int dim, int index) -> Tensor(a)");
return table->getOp<Tensor (const Tensor &, int64_t, int64_t)>(tensorTypeIdToBackend(type_id()), is_variable())(*this, dim, index);
}
aten/src/ATen/native/native_functions.yaml
代码语言:javascript复制- func: select(Tensor(a) self, int dim, int index) -> Tensor(a)
variants: function, method
device_guard: False
named_guard: False
build/aten/src/ATen/TypeDefault.cpp
代码语言:javascript复制auto registerer = torch::RegisterOperators()
.op(torch::RegisterOperators::options()
.schema("aten::select.int(Tensor(a) self, int dim, int index) -> Tensor(a)")
.impl_unboxedOnlyC10CatchAllKernel<Tensor (const Tensor &, int64_t, int64_t), &TypeDefault::select>()
.aliasAnalysis(c10::AliasAnalysisKind::FROM_SCHEMA))
...
Tensor TypeDefault::select(const Tensor & self, int64_t dim, int64_t index) {
return at::native::select(self, dim, index);
}
aten/src/ATen/native/TensorShape.cpp
代码语言:javascript复制Tensor select(const Tensor& self, int64_t dim, int64_t index) {
auto sizes = self.sizes().vec();
auto strides = self.strides().vec();
auto storage_offset = self.storage_offset() index * strides[dim];
sizes.erase(sizes.begin() dim);
strides.erase(strides.begin() dim);
auto result = self.as_strided(sizes, strides, storage_offset);
build/aten/src/ATen/core/TensorMethods.h
代码语言:javascript复制inline Tensor Tensor::as_strided(IntArrayRef size, IntArrayRef stride, c10::optional<int64_t> storage_offset) const {
static c10::OperatorHandle op = c10::Dispatcher::singleton().findSchema({"aten::as_strided", ""}).value();
return c10::Dispatcher::singleton().callUnboxedOnly<Tensor, const Tensor &, IntArrayRef, IntArrayRef, c10::optional<int64_t>>(
op, impl::dispatchTypeId(at::detail::multi_dispatch_tensor_type_set(*this)), const_cast<Tensor&>(*this), size, stride, storage_offset);
}
aten/src/ATen/native/native_functions.yaml
代码语言:javascript复制- func: as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a)
variants: function, method
dispatch:
CPU: as_strided_tensorimpl
CUDA: as_strided_tensorimpl
aten/src/ATen/native/TensorShape.cpp
代码语言:javascript复制Tensor as_strided_tensorimpl(const Tensor& self, IntArrayRef size, IntArrayRef stride, optional<int64_t> storage_offset_) {
auto storage_offset = storage_offset_.value_or(self.storage_offset());
auto result = detail::make_tensor<TensorImpl>(Storage(self.storage()), self.type_set());
setStrided(result, size, stride, storage_offset);
return result;
}
c10/core/Storage.h
代码语言:javascript复制struct C10_API Storage {
protected:
c10::intrusive_ptr<StorageImpl> storage_impl_;
接下来一步,释放_t1.
代码语言:javascript复制_t1 = torch.rand(3, 4)
_t2 = _t1.__getitem__(0)
del _t1 # <--- here
_t3 = torch.rand(3, 4)
r = _t2.__add__(_t3)
del _t2
del _t3
torch/tensor.py
代码语言:javascript复制class Tensor(torch._C._TensorBase):
torch/csrc/autograd/python_variable.cpp
代码语言:javascript复制PyTypeObject THPVariableType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C._TensorBase", /* tp_name */
sizeof(THPVariable), /* tp_basicsize */
(destructor)THPVariable_dealloc, /* tp_dealloc */
&THPVariable_as_mapping, /* tp_as_mapping */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
(traverseproc)THPVariable_traverse, /* tp_traverse */
(inquiry)THPVariable_clear, /* tp_clear */
THPVariable_properties, /* tp_getset */
THPVariable_pynew /* tp_new */
};
代码语言:javascript复制static void THPVariable_dealloc(THPVariable* self)
{
PyObject_GC_UnTrack(self);
THPVariable_clear(self);
self->cdata.~Variable();
Py_TYPE(self)->tp_free((PyObject*)self);
}
torch/csrc/autograd/python_variable.h
代码语言:javascript复制struct THPVariable {
PyObject_HEAD
torch::autograd::Variable cdata;
PyObject* backward_hooks = nullptr;
};
torch/csrc/autograd/variable.h
代码语言:javascript复制struct TORCH_API Variable : public at::Tensor {
...
class CAFFE2_API Tensor {
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> impl_;
...
struct C10_API TensorImpl : public c10::intrusive_ptr_target {
Storage storage_;
...
struct C10_API Storage {
protected:
c10::intrusive_ptr<StorageImpl> storage_impl_;
...
struct C10_API StorageImpl final : public c10::intrusive_ptr_target {
DataPtr data_ptr_;
...
class C10_API DataPtr {
c10::detail::UniqueVoidPtr ptr_;
...
class UniqueVoidPtr {
std::unique_ptr<void, DeleterFnPtr> ctx_;
...
void free_cpu(void* data) {
#ifdef _MSC_VER
_aligned_free(data);
#else
free(data);
#endif
}
最后一步,相加。
代码语言:javascript复制_t1 = torch.rand(3, 4)
_t2 = _t1.__getitem__(0)
del _t1
_t3 = torch.rand(3, 4)
r = _t2.__add__(_t3) # <--- here
del _t2
del _t3
tools/autograd/templates/python_variable_methods.cpp
代码语言:javascript复制PyMethodDef variable_methods[] = {
{"__add__", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS, NULL},
{"__radd__", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS, NULL},
{"__iadd__", (PyCFunction)THPVariable_add_, METH_VARARGS | METH_KEYWORDS, NULL},
代码语言:javascript复制bool THPVariable_initModule(PyObject *module)
{
static std::vector<PyMethodDef> methods;
THPUtils_addPyMethodDefs(methods, torch::autograd::variable_methods);
PyModule_AddObject(module, "_TensorBase", (PyObject *)&THPVariableType);
aten/src/ATen/native/native_functions.yaml
代码语言:javascript复制- func: add(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function, method
dispatch:
CPU: add
CUDA: add
SparseCPU: add
SparseCUDA: add
MkldnnCPU: mkldnn_add
torch/csrc/autograd/generated/python_variable_methods.cpp
代码语言:javascript复制static PyObject * THPVariable_add(PyObject* self_, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"add(Scalar alpha, Tensor other)|deprecated",
"add(Tensor other, *, Scalar alpha=1)",
}, /*traceable=*/true);
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(dispatch_add(self, r.scalar(0), r.tensor(1)));
} else if (r.idx == 1) {
return wrap(dispatch_add(self, r.tensor(0), r.scalar(1)));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
torch/csrc/autograd/generated/python_variable_methods_dispatch.h
代码语言:javascript复制inline Tensor dispatch_add(Tensor & self, const Tensor & other, Scalar alpha) {
AutoNoGIL no_gil;
return self.add(other, alpha);
}
build/aten/src/ATen/core/TensorMethods.h
代码语言:javascript复制inline Tensor Tensor::add(const Tensor & other, Scalar alpha) const {
static c10::OperatorHandle op = c10::Dispatcher::singleton().findSchema({"aten::add", "Tensor"}).value();
return c10::Dispatcher::singleton().callUnboxed<Tensor, const Tensor &, const Tensor &, Scalar>(
op, impl::dispatchTypeId(at::detail::multi_dispatch_tensor_type_set(*this, other)), const_cast<Tensor&>(*this), other, alpha);
}
aten/src/ATen/native/BinaryOps.cpp
代码语言:javascript复制namespace at {
namespace native {
Tensor add(const Tensor& self, const Tensor& other, Scalar alpha) {
Tensor result;
auto iter = TensorIterator::binary_op(result, self, other);
add_stub(iter->device_type(), *iter, alpha);
return iter->output();
}
aten/src/ATen/native/TensorIterator.cpp
代码语言:javascript复制TensorIterator TensorIterator::binary_op(Tensor& out, const Tensor& a,
const Tensor& b, bool check_mem_overlap) {
auto iter = TensorIterator();
iter.set_check_mem_overlap(check_mem_overlap);
iter.add_output(out);
iter.add_input(a);
iter.add_input(b);
iter.allow_cpu_scalars_ = true;
iter.build();
return iter;
}
代码语言:javascript复制void TensorIterator::build() {
// set is_output and is_read_write flags on appropriate tensors
mark_outputs();
// Check that the outputs have no internal overlap
// and do not share memory with inputs.
check_mem_overlaps();
// compute the broadcasted shape
compute_shape();
// compute each tensor's stride after broadcasting
compute_strides();
// re-order dimensions to improve coalescing
reorder_dimensions();
// compute the result dtype and device
compute_types();
// allocate the output tensor if it's not provided
allocate_outputs();
// coalesce adjacent dimensions when possible
coalesce_dimensions();
for (auto& op : operands_) {
TORCH_INTERNAL_ASSERT(op.tensor.defined());
op.data = op.tensor.data_ptr();
}
}
代码语言:javascript复制void TensorIterator::allocate_outputs() {
for (int i = 0; i < num_outputs_; i ) {
auto& op = operands_[i];
if (!op.tensor.defined()) {
TORCH_INTERNAL_ASSERT(op.is_type_defined(), "no type for operand", i);
int element_size = elementSize(op.dtype);
op.stride_bytes = compatible_stride(element_size);
auto tensor_shape = invert_perm(shape_);
auto tensor_stride = invert_perm(op.stride_bytes);
for (int dim = 0; dim < ndim(); dim ) {
tensor_stride[dim] /= element_size;
}
op.tensor = at::empty_strided(tensor_shape, tensor_stride, op.options());
}
}
}
aten/src/ATen/native/BinaryOps.h
代码语言:javascript复制using binary_fn_alpha = void(*)(TensorIterator&, Scalar alpha);
DECLARE_DISPATCH(binary_fn_alpha, add_stub);
aten/src/ATen/native/cpu/BinaryOpsKernel.cpp
代码语言:javascript复制REGISTER_DISPATCH(add_stub, &add_kernel);
aten/src/ATen/native/cpu/BinaryOpsKernel.cpp
代码语言:javascript复制void add_kernel(TensorIterator& iter, Scalar alpha_scalar) {
if (iter.dtype() == ScalarType::Bool) {
using scalar_t = bool;
auto alpha = alpha_scalar.to<scalar_t>();
cpu_kernel(iter,
[=](scalar_t a, scalar_t b) -> scalar_t { return a alpha * b; });
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(kBFloat16, iter.dtype(), "add_cpu/sub_cpu", [&]() {
auto alpha = alpha_scalar.to<scalar_t>();
auto alpha_vec = Vec256<scalar_t>(alpha);
cpu_kernel_vec(iter,
[=](scalar_t a, scalar_t b) -> scalar_t { return a alpha * b; },
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return vec256::fmadd(b, alpha_vec, a);
});
});
}
}
之后的操作前面已经介绍过了,不再赘述。
代码语言:javascript复制_t1 = torch.rand(3, 4)
_t2 = _t1.__getitem__(0)
del _t1
_t3 = torch.rand(3, 4)
r = _t2.__add__(_t3)
del _t2 # <--- here
del _t3
至此所有操作以及源码流程结束。
参考
https://www.52coding.com.cn/2019/05/05/PyTorch5/ https://github.com/Microsoft/vscode-cpptools/issues/891 https://github.com/pytorch/pytorch/wiki/Life-of-a-Tensor