R绘图|时间热图

2023-10-24 19:01:50 浏览数 (1)

在徐凌老师的 Nat Com 文章 Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics 中有这么一张补充图,介绍了本研究中涉及到的处理和取样的时间线

这种图通常被称为时间热图或时间线图,结合了颜色块、标签和标记,我们按照以下步骤进行绘图:

  1. 数据准备:整理你的数据,确保每个时间点的数据都在正确的位置。
  2. 确定颜色:为不同的部分如Water applied/No water applied和不同Omics选择颜色。
  3. 绘制基础图形:首先,绘制一个时间线图形,区分“Control”和“Drought”。
  4. 添加颜色块:根据数据在相应的时间点添加颜色块。
  5. 添加标记:如红点和绿点,表示“Metagenome”和“16S rRNA amplicon seq”等。
  6. 添加图例:确保图例清晰,与图中使用的颜色和标记一致。
  7. 优化和调整。

下面我们尝试用R复现此图

1生成示例数据

代码语言:javascript复制
data <- data.frame(
  Category = c(rep("Control", 18), rep("Drought", 18)),
  TimePoint = rep(paste0("TP", 0:17), 2),
  Water = c(rep("Water applied", 18), rep("No water applied", 5), rep("Water applied", 13)),
  Metagenome = c(rep(1, 9), rep(NA, 9), rep(NA, 5), rep(1, 13)),
  Transcriptome = c(rep(NA, 4), rep(1, 5), rep(NA, 9), rep(NA, 5), rep(1, 4), rep(NA, 9))
)

# 示例数据前六行
  Category TimePoint         Water Metagenome Transcriptome
1  Control       TP0 Water applied          1            NA
2  Control       TP1 Water applied          1            NA
3  Control       TP2 Water applied          1            NA
4  Control       TP3 Water applied          1            NA
5  Control       TP4 Water applied          1             1
6  Control       TP5 Water applied          1             1

2作图

代码语言:javascript复制
library(ggplot2)

# 将TimePoint转换为有序因子
data$TimePoint <- factor(data$TimePoint, levels = paste0("TP", 0:17))

# 预定义颜色和其他属性
fill_colors <- c("Water applied" = "#7BAF8A", "No water applied" = "#D17F39")
color_values <- c("Metagenome" = "#9C281B", "Transcriptome" = "#343D5B")

# 使用ggplot2绘制图形
ggplot(data, aes(x = TimePoint, y = Category, fill = Water))  
  geom_tile(color = "black", size = 0.5)  
  geom_point(data = subset(data, !is.na(Metagenome)), aes(color = "Metagenome"), size = 5,
             position = position_nudge(y = 0))  
  geom_point(data = subset(data, !is.na(Transcriptome)), aes(color = "Transcriptome"), size = 5,
             position = position_nudge(y = -0.1))  
  scale_fill_manual(values = fill_colors)  
  scale_color_manual(values = color_values)  
  guides(fill = guide_legend(override.aes = list(color = NA))) 
  labs(title = "Time point (in weeks)", fill = "", color = "", x = NULL)  
  theme_minimal()  
  theme(
    axis.title.y = element_blank(),
    panel.grid.major = element_blank(),
    axis.line.x = element_blank(),
    axis.text.x = element_text(face = "bold", size = 9,vjust = 12),
    axis.text.y = element_text(face = "bold", size = 10),
    plot.title = element_text(face = "bold", hjust = 0.5,vjust = -5))

3小结

除了展示上面的信息,你还可以额外生成一列 Note 用于文字标记,或通过调整点的高度位置来将组学数据展示在图形以外。

0 人点赞