印章检测流程:
利用深度神经网络,提取印章深度特征,同时学习印章之间的相似度,自己与自己相似,自己与其它不相似。
1. Siamese网络
Siamese网络是一种常用的深度学习相似性度量方法,它包含两个共享权重的CNN网络(说白了这两个网络其实就是一个网络,在代码中就构建一个网络就行了),将两个输入映射到同一特征空间,然后计算它们的距离或相似度一一使用共享的卷积层和全连接层,输出特征向量表示,然后计算相似度。
2. Triplet Loss网络
TripletLoss网络是一种通过比较三个样本之间的相似度来训练网络的方法。它包含三个共享权重的CNN网络,分别处理anchor、 positive和negative样本,其中positive样本与anchor相似与negative样本则不相似。通过三元组训练方法学习将同类别样本映射到相邻区域,不同类别样本映射到较远的区域。
3. 本文方法
本文利用李生网络,把真章、假章同时输入进行学习,真与真相似度为1;真与假相似度为0,设计损失函数(结合BCELoss和Contrastive Loss) 进行模型训练。
训练步骤:
1.按上述格式放置数据集,放在dataset文件夹下。
2.将train.py当中的train_own_data设置成True。
3.运行train.py开始训练,可以观察对应step训练集和验证集的准确率。
将训练得到的.pth文件转换为onnx模型,再通过AIMO将onnx转换为tflite与dlc模型。
Aidlux平台部署
1. tfilte部署
代码语言:javascript复制import aidlite_gpu
import cv2
from cvs import *
import numpy as np
import os
import time
from PIL import Image
from contrast_utils.utils import letterbox_image, preprocess_input, cvtColor
def sigmoid(x):
return 1 / (1 np.exp(-x))
if __name__ == "__main__":
# 1.初始化aidlite类并创建aidlite对象
aidlite = aidlite_gpu.aidlite()
print("ok")
# 2.加载模型
w = h = 112
input_shape = [w, h]
in_shape = [ 1 * w * h * 3 * 4, 1 * w * h * 3 * 4]
out_shape = [ 1 * 1 * 1 * 4]
model_path = "/home/aidlux/model/tflite/vgg16_fixed_fp32.tflite"
value = aidlite.ANNModel(model_path, in_shape, out_shape, 4, 0)
print("gpu:", value)
img1_pth = "/home/aidlux/test_imgs/test/false/beijing_2019-11-21_10406_200_200_seal.jpg"
img2_pth = "/home/aidlux/test_imgs/test/true/beijing_0905_61269575.jpg"
out = "result"
os.makedirs(out, exist_ok=True)
img10 = cv2.imread(img1_pth)
img20 = cv2.imread(img2_pth)
img1 = Image.fromarray(cv2.cvtColor(img10, cv2.COLOR_BGR2RGB))
img2 = Image.fromarray(cv2.cvtColor(img20, cv2.COLOR_BGR2RGB))
image_1 = letterbox_image(img1, [input_shape[1], input_shape[0]], False)
image_2 = letterbox_image(img2, [input_shape[1], input_shape[0]], False)
photo_1 = preprocess_input(np.array(image_1, np.float32))
photo_2 = preprocess_input(np.array(image_2, np.float32))
photo_1 = np.expand_dims(np.transpose(photo_1, (2, 0, 1)), 0)
photo_2 = np.expand_dims(np.transpose(photo_2, (2, 0, 1)), 0)
# 3.传入模型输入数据
# input_data = np.array([photo_1, photo_2])
aidlite.setInput_Float32(photo_1, index=0)
aidlite.setInput_Float32(photo_2, index=1)
# 4.执行推理
start = time.time()
aidlite.invoke()
end = time.time()
timerValue = (end - start) * 1000
print("infer time(ms):{}".format(timerValue))
# 5.获取输出
pred = aidlite.getOutput_Float32(0)[0]
print(pred)
outs = round(sigmoid(pred), 9)
print(outs)
img_pair = np.hstack((cv2.resize(img10, (112,112)), cv2.resize(img20, (112,112))))
h, w = img_pair.shape[:2]
print('-- ', img_pair.shape)
h, w = img_pair.shape[:2]
cv2.putText(img_pair, 'sim:{}'.format(str(outs)), (0, h), cv2.FONT_ITALIC, 1, (255,255,0), 2)
# from cvs import *
cvs.imshow(img_pair)
cv2.imwrite("/home/aidlux/res/adilux_tflite_img_pair.jpg", img_pair)
2. dlc部署
代码语言:javascript复制import aidlite_gpu
import cv2
from cvs import *
import numpy as np
import os
import time
from PIL import Image
from contrast_utils.utils import letterbox_image, preprocess_input, cvtColor
def sigmoid(x):
return 1 / (1 np.exp(-x))
if __name__ == "__main__":
# 1.初始化aidlite类并创建aidlite对象
aidlite = aidlite_gpu.aidlite()
print("ok")
# 2.加载模型
w = h = 112
input_shape = [w, h]
#rgb3通道 1个float是32位也就是4字节,每个数据4个字节, 4代表4个字节
in_shape = [ 1 * w * h * 3 * 4, 1 * w * h * 3 * 4]
out_shape = [1 * 1 * 1 * 4]
model_path = "/home/aidlux/model/dlc/vgg16_fixed.dlc"
# value = aidlite.ANNModel(model_path, in_shape, out_shape, numberOfThreads, enableNNAPI)
#numberOfThreads- int类型。加载数据和模型所需要的核数,可选的数值为1,2,3,4
# enableNNAPI - int类型。选择模型的推理的方式,默认可选值为-1:在cpu上推理,0:在GPU上推理,1:混合模式推理,2:dsp推理模式
value = aidlite.ANNModel(model_path, in_shape, out_shape, 4, 0) #不支持多输入
# value = aidlite.FAST_ANNModel(model_path, in_shape, out_shape, 4, 0)
print("gpu:", value)
img1_pth = "/home/aidlux/test_imgs/test/false/beijing_2019-11-21_10406_200_200_seal.jpg"
img2_pth = "/home/aidlux/test_imgs/test/true/beijing_0905_61269575.jpg"
out = "result"
os.makedirs(out, exist_ok=True)
img10 = cv2.imread(img1_pth)
img20 = cv2.imread(img2_pth)
img1 = Image.fromarray(cv2.cvtColor(img10, cv2.COLOR_BGR2RGB))
img2 = Image.fromarray(cv2.cvtColor(img20, cv2.COLOR_BGR2RGB))
image_1 = letterbox_image(img1, [input_shape[1], input_shape[0]], False)
image_2 = letterbox_image(img2, [input_shape[1], input_shape[0]], False)
photo_1 = preprocess_input(np.array(image_1, np.float32))
photo_2 = preprocess_input(np.array(image_2, np.float32))
photo_1 = np.expand_dims(np.transpose(photo_1, (2, 0, 1)), 0)
photo_2 = np.expand_dims(np.transpose(photo_2, (2, 0, 1)), 0)
# 3.传入模型输入数据
aidlite.setInput_Float32(photo_1, index=0)
aidlite.setInput_Float32(photo_2, index=1)
# 4.执行推理
start = time.time()
aidlite.invoke()
end = time.time()
timerValue = (end - start) * 1000
print("infer time(ms):{}".format(timerValue))
# 5.获取输出
pred = aidlite.getOutput_Float32(0)[0]
print(pred)
outs = round(sigmoid(float(pred)), 9)
print(outs)
img_pair = np.hstack((cv2.resize(img10, (112,112)), cv2.resize(img20, (112,112))))
h, w = img_pair.shape[:2]
print('-- ', img_pair.shape)
h, w = img_pair.shape[:2]
cv2.putText(img_pair, 'sim:{}'.format(str(outs)), (0, h), cv2.FONT_ITALIC, 1, (0,0,255), 2)
# from cvs import *
cvs.imshow(img_pair)
cv2.imwrite("/home/aidlux/res/adilux_dlc_img_pair.jpg", img_pair)
效果视频:
pth转onnx、onnx推理、tflite推理、转tflite以及转dlc过程:模型转换推理过程_哔哩哔哩_bilibili
tflite部署:https://www.bilibili.com/video/BV1ZQ4y1p7iL/
dlc部署:https://www.bilibili.com/video/BV1oC4y137t1/