分布式基础概念

2023-10-25 09:58:51 浏览数 (1)

集群、分布式、SOA、微服务的概念及区别

集群:

不同服务器部署同一套应用服务对外提供访问,实现服务的负载均衡或者互备(热备,主从等),指同一种组件的多个实例,形成的逻辑上的整体。单个节点可以提供完整服务。集群是物理形态

分布式:

服务的不同模块部署在不同的服务器上,单个节点不能提供完整服务,需要多节点协调提供服务(也可以是相同组件部署在不同节点、但节点间通过交换信息协作提供服务),分布式强调的是工作方式

SOA:

面向服务的架构,一种设计方法,其中包含多个服务,服务之间通过相互依赖最终提供一系列的功能。一个服务通常以独立的形式存在于操作系统进程中。各个服务之间通过网络调用

  • 中心化实现:ESB(企业服务总线),各服务通过ESB进行交互,解决异构系统之间的连通性,通过协议转换、消息解析、消息路由把服务提供者的数据传送到服务消费者。很重,有一定的逻辑,可以解决一些公用逻辑的问题
  • 去中心化实现:微服务
微服务:

微服务:在SOA上做的升华,微服务架构强调的一个重点是业务需要彻底的组件化和服务化,原有的单个业务系统会拆分为多个可以独立开发、设计、运行的小应用。这些小应用之间通过服务完成交互和集成

服务单一职责

轻量级通信:去掉ESB总线,采用restapi通信

简述CAP理论

  • 数据一致性(consistency):如果系统对一个写操作返回成功,那么之后的读请求都必须读到这个新数据;如果返回失败,那么所有读操作都不能读到这个数据,对调用者而言数据具有强一致性(strong consistency)
  • 服务可用性(availability):所有读写请求在一定时间内得到响应,可终止、不会一直等待
  • 分区容错性(partition-tolerance):在网络分区的情况下,被分隔的节点仍能正常对外服务

如果选择了CA而放弃了P,那么当发生分区现象时,为了保证C,系统需要禁止写入,当有写入请求时,系统返回error(例如,当前系统不允许写入),这又和A冲突了,因为A要求返回no error和no timeout。因此,分布式系统理论上不可能选择CA架构,只能选择CP或者AP架构

反证:

如果CAP三者可同时满足,由于允许P的存在,则一定存在节点之间的丢包,如此则不能保证C

因为允许分区容错,写操作可能在节点1上成功,在节点2上失败,这时候对于Client 1 (读取节点1)和Client 2(读取节点2),就会读取到不一致的值,出现不一致的情况。如果要保持一致性,写操作必须同时失败,也就是降低系统的可用性。

简述Base理论

cap理论的一种妥协,由于cap只能二取其一,base理论降低了发生分区容错时对可用性和一致性的要求

  1. 基本可用:允许可用性降低(可能响应延长、可能服务降级),
  2. 软状态:指允许系统中的数据存在中间状态,并认为该中间状态不会影响系统整体可用性。
  3. 最终一致性:节点数据同步可以存在时延),但在一定的期限后必须达成数据的一致,状态变为最终状态

数据一致性模型有哪些

强一致性:

当更新操作完成之后,任何多个后续进程的访问都会返回最新的更新过的值,这种是对用户最友好的,就是用户上一次写什么,下一次就保证能读到什么。根据CAP理论,这种实现需要牺牲可用性。

弱一致性:

系统在数据写入成功之后,不承诺立即可以读到最新写入的值,也不会具体的承诺多久之后可以读到。用户读到某一操作对系统数据的更新需要一段时间,我们称这段时间为“不一致性窗口”

最终一致性:

最终一致性是弱一致性的特例,强调的是所有的数据副本,在经过一段时间的同步之后,最终都能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。到达最终一致性的时间,就是不一致窗口时间,在没有故障发生的前提下,不一致窗口的时间主要受通信延迟,系统负载和复制副本的个数影响。

最终一致性模型根据其提供的不同保证可以划分为更多的模型,包括因果一致性和会话一致性等。

因果一致性:

要求有因果关系的操作顺序得到保证,非因果关系的操作顺序则无所谓。

进程A在更新完某个数据项后通知了进程B,那么进程B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程A更新后的最新值。

在微博或者微信进行评论的时候,比如你在朋友圈发了一张照片,朋友给你评论了,而你对朋友的评论进行了回复,这条朋友圈的显示中,你的回复必须在朋友之后,这是一个因果关系,而其他没有因果关系的数据,可以允许不一致。

会话一致性:

将对系统数据的访问过程框定在了一个会话当中,约定了系统能保证在同一个有效的会话中实现“读己之所写”的一致性,就是在你的一次访问中,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。实际开发中有分布式的Session一致性问题,可以认为是会话一致性的一个应用。

0 人点赞