软件测试|Python科学计算神器numpy教程(十二)

2023-10-25 18:34:02 浏览数 (1)

简介

NumPy是Python中用于科学计算的一个强大的库,其中包含了丰富的数学和统计函数。这些统计函数允许用户对数组进行各种统计计算,例如平均值、标准差、方差、最大值、最小值等。在本文中,我们将详细介绍NumPy中一些常用的统计函数及其用法。

统计函数示例

  1. numpy.amin() 和 numpy.amax()

这两个函数用于计算数组沿指定轴的最小值与最大值:

  • amin() 沿指定的轴,查找数组中元素的最小值,并以数组形式返回;
  • amax() 沿指定的轴,查找数组中元素的最大值,并以数组形式返回。

对于二维数组来说,axis=1 表示沿着水平方向,axis=0 表示沿着垂直方向。如下图:

示例如下:

代码语言:python代码运行次数:0复制
import numpy as np
a = np.array([[3,7,5],[8,4,3],[2,4,9]])
print ('数组a是:')
print(a)
#amin()函数
print (np.amin(a))
#调用 amin() 函数,axis=1
print(np.amin(a,1))
#调用amax()函数
print(np.amax(a))
#再次调用amax()函数
print(np.amax(a,axis=0))

----------
输出结果如下:
我们的数组是:
[[3 7 5]
[8 4 3]
[2 4 9]]

调用amin()函数:
2

调用 amin(axis=1) 函数:
[3 3 2]

amax() 函数:
9
amax(axis=0) 函数:
[8 7 9]
  1. numpy.ptp()

numpy.ptp() 用于计算数组元素中最值之差值,也就是(最大值 - 最小值)。

示例如下:

代码语言:python代码运行次数:0复制
import numpy as np 
a = np.array([[2,10,20],[80,43,31],[22,43,10]]) 
print("原数组",a) 
print("沿着axis 1:",np.ptp(a,1)) 
print("沿着axis 0:",np.ptp(a,0)) 

-------------
输出结果如下:
原数组 array:
[[ 2 10 20]
[80 43 31]
[22 43 10]]

沿着 axis 1: [18 49 33]
沿着 axis 0: [78 33 21]
  1. numpy.percentile()

百分位数,是统计学中使用的一种度量单位。该函数表示沿指定轴,计算数组中任意百分比分位数,语法格式如下:

代码语言:python代码运行次数:0复制
numpy.percentile(a, q, axis)

函数 numpy.percentile() 的参数说明:

  • a:输入数组;
  • q:要计算的百分位数,在 0~100 之间;
  • axis:沿着指定的轴计算百分位数。

示例如下:

代码语言:python代码运行次数:0复制
import numpy as np 
a = np.array([[2,10,20],[80,43,31],[22,43,10]]) 
print("数组a:",a) 
print("沿着axis=0计算百分位数",np.percentile(a,10,0)) 
print("沿着axis=1计算百分位数",np.percentile(a,10,1))

---------------
数组a:
[[ 2 10 20]
[80 43 31]
[22 43 10]]

沿着axis=0计算百分位数: [ 6.  16.6 12. ]
沿着axis=1计算百分位数: [ 3.6 33.4 12.4]
  1. numpy.median()

numpy.median() 用于计算 a 数组元素的中位数(中值):

代码语言:python代码运行次数:0复制
import numpy as np
a = np.array([[30,65,70],[80,95,10],[50,90,60]])
#数组a:
print(a)
#median()
print np.median(a)
#axis 0
print np.median(a, axis = 0)
#axis 1:
print(np.median(a, axis = 1))

-----------------
输出结果如下:
数组a:
[[30 65 70]
[80 95 10]
[50 90 60]]
调用median()函数:
65.0
median(axis=0):
[ 50. 90. 60.]
median(axis=1):
[ 65. 80. 60.]
  1. numpy.mean()

该函数表示沿指定的轴,计算数组中元素的算术平均值(即元素之总和除以元素数量)。

示例如下:

代码语言:python代码运行次数:0复制
import numpy as np
a = np.array([[1,2,3],[3,4,5],[4,5,6]]) 
print ('我们的数组是:')
print (a)
print ('调用 mean() 函数:')
print (np.mean(a))
print ('沿轴 0 调用 mean() 函数:')
print (np.mean(a, axis =  0))
print ('沿轴 1 调用 mean() 函数:')
print (np.mean(a, axis =  1))

----------------
输出结果如下:
我们的数组是:
[[1 2 3]
[3 4 5]
[4 5 6]]

调用 mean() 函数:
3.6666666666666665

沿轴 0 调用 mean() 函数:
[2.66666667 3.66666667 4.66666667]

沿轴 1 调用 mean() 函数:
[2. 4. 5.]
  1. numpy.average()

加权平均值是将数组中各数值乘以相应的权数,然后再对权重值求总和,最后以权重的总和除以总的单位数(即因子个数)。

numpy.average() 根据在数组中给出的权重,计算数组元素的加权平均值。该函数可以接受一个轴参数 axis,如果未指定,则数组被展开为一维数组。

下面举一个简单的示例:现有数组 1,2,3,4 和相应的权重数组 4,3,2,1,它的加权平均值计算如下:

代码语言:python代码运行次数:0复制
加权平均值=(1 * 4   2 * 3   3 * 2   4 * 1)/(4   3   2   1)

使用 average() 计算加权平均值,代码如下:

代码语言:python代码运行次数:0复制
import numpy as np
a = np.array([1,2,3,4]) 
print('a数组是:')
print(a)
#average()函数:
print (np.average(a))
# 若不指定权重相当于对数组求均值
we = np.array([4,3,2,1]) 
#调用 average() 函数:')
print(np.average(a,weights = we))
#returned 为Ture,则返回权重的和 
prin(np.average([1,2,3,4],weights =  [4,3,2,1], returned =  True))

-----------------
输出结果如下:
a数组是:
[1 2 3 4]

无权重值时average()函数:
2.5

有权重值时average()函数:
2.0

元组(加权平均值,权重的和):
(2.0, 10.0)
  1. numpy.var()

示例如下:

代码语言:python代码运行次数:0复制
import numpy as np
print (np.var([1,2,3,4]))

--------------
输出结果如下:
1.25
  1. numpy.std()

标准差是方差的算术平方根,用来描述一组数据平均值的分散程度。若一组数据的标准差较大,说明大部分的数值和其平均值之间差异较大;若标准差较小,则代表这组数值比较接近平均值。它的公式如下:

代码语言:python代码运行次数:0复制
std = sqrt(mean((x - x.mean())**2

NumPy 中使用 np.std() 计算标准差。示例如下:

代码语言:python代码运行次数:0复制
import numpy as np
print (np.std([1,2,3,4]))

------------------------
1.1180339887498949

总结

NumPy提供了丰富的统计函数,可以方便地对数组进行各种统计计算,例如平均值、中位数、标准差、方差、最大值、最小值等。这些函数在数据分析、科学计算和机器学习等领域中扮演着重要角色。通过灵活运用这些统计函数,我们可以更好地理解和处理数据,并进行相应的数据分析和预测。在日常使用中,建议多熟悉这些函数的用法,以提高Python在科学计算方面的应用水平。

0 人点赞