Halcon转OpenCV实例--保险丝颜色识别(附源码)

2023-11-06 20:56:30 浏览数 (1)

视觉/图像重磅干货,第一时间送达!

导 读

本文主要介绍Halcon转OpenCV实例--保险丝颜色识别(附源码)。

实例来源

实例来源于Halcon例程color_fuses.hdev--classify fuses by color

下面是Halcon实例代码和实现效果:

代码语言:javascript复制
* color_fuses.hdev: classify fuses by color
dev_update_window ('off')
* ****
* step: set up fuse properties and hue ranges
* ****
FuseColors := ['Orange','Red','Blue','Yellow','Green']
FuseTypes := [5,10,15,20,30]
* HueRanges: Orange 10-30, Red 0-10...
HueRanges := [10,30,0,10,125,162,30,64,96,128]
Count := 0
dev_close_window ()
dev_open_window (0, 0, 800, 600, 'black', WH)
while (Count <= 4)
    * ****
    * step: acquire image
    * ****
    read_image (Image, 'color/color_fuses_0'   Count)
    dev_display (Image)
    set_tposition (WH, 12, 512)
    write_string (WH, 'color/color_fuses0'   Count   '.png')
    * ****
    * step: extract saturated hues
    * ****
    decompose3 (Image, Red, Green, Blue)
    trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
    threshold (Saturation, Saturated, 60, 255)
    reduce_domain (Hue, Saturated, HueSaturated)
    for Fuse := 0 to |FuseTypes| - 1 by 1
        * ****
        * step: classify specific fuse
        * ****
        threshold (HueSaturated, CurrentFuse, HueRanges[Fuse * 2], HueRanges[Fuse * 2   1])
        connection (CurrentFuse, CurrentFuseConn)
        fill_up (CurrentFuseConn, CurrentFuseFill)
        select_shape (CurrentFuseFill, CurrentFuseSel, 'area', 'and', 6000, 20000)
        area_center (CurrentFuseSel, FuseArea, Row1, Column1)
        dev_set_color ('magenta')
        for i := 0 to |FuseArea| - 1 by 1
            set_tposition (WH, Row1[i], Column1[i])
            write_string (WH, FuseColors[Fuse]   ' '   FuseTypes[Fuse]   ' Ampere')
        endfor
        set_tposition (WH, 24 * (Fuse   1), 12)
        dev_set_color ('slate blue')
        write_string (WH, FuseColors[Fuse]   ' Fuses: '   |FuseArea|)
    endfor
    stop ()
    Count := Count   1
endwhile
dev_update_window ('on')

实现思路也比较简单,先将图像转到HSV颜色空间,然后分离S通道做阈值(60~255),再分离H通道根据不同颜色的H范围来判定颜色。

OpenCV实现步骤与代码

测试图:

实现步骤:

【1】图像转到HSV颜色空间

【2】通道分离, 分离出H, S, V通道

【3】S通道做二值化(60~255),然后通过轮廓查找提取每个保险丝的ROI

【4】对每个ROI做颜色判断:通过判断H通道特定范围内的像素数量

实现代码与测试效果:

代码语言:javascript复制
#公众号:OpenCV与AI深度学习
import numpy as np
import cv2

FuseColors = ['Orange','Red','Blue','Yellow','Green']

def check_color(ROI):
  index = 0
  #判断是否为红色
  _,thresRL = cv2.threshold(ROI,0,255,cv2.THRESH_BINARY)
  _,thresRH = cv2.threshold(ROI,10,255,cv2.THRESH_BINARY)
  thresRed = thresRL - thresRH
  numRed = cv2.countNonZero(thresRed)
  #cv2.imshow('thresRed',thresRed)
  #判断是否为橙色
  _,thresOL = cv2.threshold(ROI,5,255,cv2.THRESH_BINARY)
  _,thresOH = cv2.threshold(ROI,25,255,cv2.THRESH_BINARY)
  thresOrange = thresOL - thresOH
  numOrange = cv2.countNonZero(thresOrange)
  #cv2.imshow('thresOrange',thresOrange)
  #判断是否为蓝色
  _,thresBL = cv2.threshold(ROI,90,255,cv2.THRESH_BINARY)
  _,thresBH = cv2.threshold(ROI,110,255,cv2.THRESH_BINARY)
  thresBlue = thresBL - thresBH
  numBlue = cv2.countNonZero(thresBlue)
  #cv2.imshow('thresBlue',thresBlue)
  #判断是否为黄色
  _,thresYL = cv2.threshold(ROI,25,255,cv2.THRESH_BINARY)
  _,thresYH = cv2.threshold(ROI,65,255,cv2.THRESH_BINARY)
  thresYellow = thresYL - thresYH
  numYellow = cv2.countNonZero(thresYellow)
  #cv2.imshow('thresYellow',thresYellow)
  #判断是否为绿色
  _,thresGL = cv2.threshold(ROI,65,255,cv2.THRESH_BINARY)
  _,thresGH = cv2.threshold(ROI,90,255,cv2.THRESH_BINARY)
  thresGreen = thresGL - thresGH
  numGreen = cv2.countNonZero(thresGreen)
  #cv2.imshow('thresGreen',thresGreen)

  max_val = max(numRed, numBlue,numYellow, numGreen,numOrange)
  #print(max_val) 
  if max_val == numOrange:
    index = 0
  elif max_val == numRed:
    index = 1
  elif max_val == numBlue:
    index = 2
  elif max_val == numYellow:
    index = 3
  else:
    index = 4

  return index
    

img=cv2.imread("./color_fuses_01.png")
cv2.imshow('src',img)
rows,cols,channel = img.shape
hsv_img=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
hImg,sImg,vImg=cv2.split(hsv_img)

_,thres = cv2.threshold(sImg,60,255,cv2.THRESH_BINARY)
cv2.imshow('thres',thres)
cv2.imshow('hImg',hImg)
cv2.imwrite('h.jpg',hImg)
#cv2.waitKey()

contours,hierarchy = cv2.findContours(thres, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for i in range(0,len(contours)):
  rect = cv2.minAreaRect(contours[i])
  box = cv2.boxPoints(rect)
  box = np.int0(box)
  width = rect[1][0]
  height = rect[1][1]
  if width < 100 or height < 100:
    continue

  (x, y, w, h) = cv2.boundingRect(contours[i])
  ROI = hImg[y:y h,x:x w]
  index = check_color(ROI)
  center = (int(rect[0][0]),int(rect[0][1]))
  radius = (int)(max(width,height)/2 20)
  if index == 0:
    cv2.circle(img,center,radius,(0,128,255),3)
    #img = cv2.drawContours(img,[box],0,(0,128,255),3)
    cv2.putText(img,FuseColors[index],center,0,1.2,(255,255,0),2)
    
  elif index == 1:
    cv2.circle(img,center,radius,(0,0,255),3)
    #img = cv2.drawContours(img,[box],0,(0,0,255),3)
    cv2.putText(img,FuseColors[index],center,0,1.2,(0,255,0),2)
    

  elif index == 2:
    cv2.circle(img,center,radius,(255,255,0),3)
    #img = cv2.drawContours(img,[box],0,(255,255,0),3)
    cv2.putText(img,FuseColors[index],center,0,1.2,(255,0,255),2)
  elif index == 3:
    cv2.circle(img,center,radius,(0,255,255),3)
    #img = cv2.drawContours(img,[box],0,(0,255,255),3)
    cv2.putText(img,FuseColors[index],center,0,1.2,(0,255,128),2)
  elif index == 4:
    cv2.circle(img,center,radius,(0,255,0),3)
    #img = cv2.drawContours(img,[box],0,(0,255,0),3)
    cv2.putText(img,FuseColors[index],center,0,1.2,(0,0,255),2)
  
cv2.imshow('result',img)
cv2.waitKey() 
cv2.destroyAllWindows()

0 人点赞