Caffe框架整理

2023-11-08 08:28:05 浏览数 (2)

Caffe安装

Caffe框架下载地址:https://github.com/BVLC/caffe

下载完成后解压,进入主目录,执行

代码语言:javascript复制
cp Makefile.config.example Makefile.config

安装依赖

代码语言:javascript复制
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler 
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libatlas-base-dev

进入src/caffe/proto文件夹,修改caffe.proto,在最后添加

代码语言:javascript复制
message PermuteParameter {
  // The new orders of the axes of data. Notice it should be with
  // in the same range as the input data, and it starts from 0.
  // Do not provide repeated order.
  repeated uint32 order = 1;
}
message UpsampleParameter {
        optional int32 height = 1 [default = 32];
        optional int32 width = 2 [default = 32];
        optional int32 height_scale = 3 [default = 2];
        optional int32 width_scale = 4 [default = 2];
        enum UpsampleOp {
                NEAREST = 0;
                BILINEAR = 1;
        }
        optional UpsampleOp mode = 5 [default = BILINEAR];
}

执行命令

代码语言:javascript复制
protoc caffe.proto --cpp_out=./

回到主目录,修改Makefile.config(该文件的配置跟环境有关系,我这里的配置为NVIDIA 3090, CUDA 12.0, CUDNN为cudnn-linux-x86_64-8.9.6.50_cuda12-archive)

代码语言:javascript复制
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#	You should not set this flag if you will be reading LMDBs with any
#	possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 4

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g   and the default for OSX is clang  
CUSTOM_CXX := g  

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
# CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
# CUDA_ARCH := -gencode arch=compute_30,code=sm_30 
# CUDA_ARCH := -gencode arch=compute_35,code=sm_35 
CUDA_ARCH := -gencode arch=compute_50,code=sm_50 
		-gencode arch=compute_52,code=sm_52 
		-gencode arch=compute_60,code=sm_60 
		-gencode arch=compute_61,code=sm_61 
		-gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7 
		/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda3/envs/pytorch
PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
		  $(ANACONDA_HOME)/include/python3.9 
		  $(ANACONDA_HOME)/lib/python3.9/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.9m
# PYTHON_INCLUDE := /usr/include/python3.5m 
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := $(ANACONDA_HOME)/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE  = $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB  = $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ /usr/local/include/opencv4/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/local/lib/opencv4/

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS  = $(shell brew --prefix)/include
# LIBRARY_DIRS  = $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1 cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

有关Anaconda和Cuda以及Cudnn的设置,请参考乌班图安装Pytorch、Tensorflow Cuda环境

执行

代码语言:javascript复制
sudo make all -j16

0 人点赞