代码补全的主入口
代码补全逻辑入口在calculateInlineCompletions
这个函数中:
async function calculateInlineCompletions(ctx, vscodeDocument, position, context, token) {
let document = new ExtensionTextDocument(vscodeDocument),
textEditorOptions = getTextEditorOptions(vscodeDocument),
telemetryData = TelemetryData.createAndMarkAsIssued();
if (!ghostTextEnabled(ctx)) return {
type: "abortedBeforeIssued",
reason: "ghost text is disabled"
};
if (ignoreDocument(ctx, document)) return {
type: "abortedBeforeIssued",
reason: "document is ignored"
};
if (isDocumentTooLarge(document)) return {
type: "abortedBeforeIssued",
reason: "document is too large"
};
if (ghostTextLogger.debug(ctx, `Ghost text called at [${position.line}, ${position.character}], with triggerKind ${context.triggerKind}`), token.isCancellationRequested) return ghostTextLogger.info(ctx, "Cancelled before extractPrompt"), {
type: "abortedBeforeIssued",
reason: "cancelled before extractPrompt"
};
let result = await getGhostText(ctx, document, position, context.triggerKind === Ol.InlineCompletionTriggerKind.Invoke, telemetryData, token);
if (result.type !== "success") return ghostTextLogger.debug(ctx, "Breaking, no results from getGhostText -- " result.type ": " result.reason), result;
let [resultArray, resultType] = result.value;
if (lastPosition && lastUri && !(lastPosition.isEqual(position) && lastUri.toString() === document.uri.toString()) && resultType !== 2) {
let rejectedCompletions = computeRejectedCompletions();
rejectedCompletions.length > 0 && postRejectionTasks(ctx, "ghostText", document.offsetAt(lastPosition), lastUri, rejectedCompletions), lastPartiallyAcceptedLength = void 0;
}
if (lastPosition = position, lastUri = document.uri, lastShownCompletions = [], token.isCancellationRequested) return ghostTextLogger.info(ctx, "Cancelled after getGhostText"), {
type: "canceled",
reason: "after getGhostText",
telemetryData: {
telemetryBlob: result.telemetryBlob
}
};
let inlineCompletions = completionsFromGhostTextResults(ctx, resultArray, resultType, document, position, textEditorOptions, lastShownCompletionIndex).map(completion => {
let {
text: text,
range: range
} = completion,
newRange = new Ol.Range(new Ol.Position(range.start.line, range.start.character), new Ol.Position(range.end.line, range.end.character)),
completionItem = new Ol.InlineCompletionItem(text, newRange);
return completionItem.index = completion.index, completionItem.telemetry = completion.telemetry, completionItem.displayText = completion.displayText, completionItem.resultType = completion.resultType, completionItem.id = completion.uuid, completionItem.uri = document.uri, completionItem.insertPosition = new Ol.Position(completion.position.line, completion.position.character), completionItem.insertOffset = document.offsetAt(completionItem.insertPosition), completionItem.command = {
title: "PostInsertTask",
command: postInsertCmdName,
arguments: [completionItem]
}, completionItem;
});
return inlineCompletions.length === 0 ? {
type: "empty",
reason: "no completions in final result",
telemetryData: result.telemetryData
} : {
...result,
value: inlineCompletions
};
}
我们逐行分析一下,首先获得了一个Document的包装实例document,然后拿到了当前editor text的options,初始化了telemetry:
代码语言:javascript复制let document = new ExtensionTextDocument(vscodeDocument),
textEditorOptions = getTextEditorOptions(vscodeDocument),
telemetryData = TelemetryData.createAndMarkAsIssued();
接着是四种需要终止代码补全的情况:
代码语言:javascript复制if (!ghostTextEnabled(ctx)) return {
type: "abortedBeforeIssued",
reason: "ghost text is disabled"
};
if (ignoreDocument(ctx, document)) return {
type: "abortedBeforeIssued",
reason: "document is ignored"
};
if (isDocumentTooLarge(document)) return {
type: "abortedBeforeIssued",
reason: "document is too large"
};
if (ghostTextLogger.debug(ctx, `Ghost text called at [${position.line}, ${position.character}], with triggerKind ${context.triggerKind}`), token.isCancellationRequested) return ghostTextLogger.info(ctx, "Cancelled before extractPrompt"), {
type: "abortedBeforeIssued",
reason: "cancelled before extractPrompt"
};
ghostTextEnabled
,这个是在copilot配置里,如果关闭了代码补全。ignoreDocument
,不在白名单内的Document,这里取的是enable那个配置,我们在之前分析过默认值:plaintext
,默认是ignore的。markdown
,默认是ignore的。scminput
,默认是ignore的。- 除此之外,还有三种scheme被过滤的:
CopilotPanelScheme, "output", "search-editor”
isDocumentTooLarge
,这个主要是通过document.getText()是否会报错RangeError
来判定文件是否过大了。isCancellationRequested
,这个是输入的时候发起的取消请求。
接下来就是通过getGhostText
拿到结果:
let result = await getGhostText(ctx, document, position, context.triggerKind === Ol.InlineCompletionTriggerKind.Invoke, telemetryData, token);
if (result.type !== "success") return ghostTextLogger.debug(ctx, "Breaking, no results from getGhostText -- " result.type ": " result.reason), result;
let [resultArray, resultType] = result.value;
if (lastPosition && lastUri && !(lastPosition.isEqual(position) && lastUri.toString() === document.uri.toString()) && resultType !== 2) {
let rejectedCompletions = computeRejectedCompletions();
rejectedCompletions.length > 0 && postRejectionTasks(ctx, "ghostText", document.offsetAt(lastPosition), lastUri, rejectedCompletions), lastPartiallyAcceptedLength = void 0;
}
if (lastPosition = position, lastUri = document.uri, lastShownCompletions = [], token.isCancellationRequested) return ghostTextLogger.info(ctx, "Cancelled after getGhostText"), {
type: "canceled",
reason: "after getGhostText",
telemetryData: {
telemetryBlob: result.telemetryBlob
}
};
这里有两个if判断,分别处理的是completions拒绝和cancel两种场景,也就是说在getGhostText
触发时机内,发生了cancel。
最后就是组装inlineCompletions返回:
代码语言:javascript复制let inlineCompletions = completionsFromGhostTextResults(ctx, resultArray, resultType, document, position, textEditorOptions, lastShownCompletionIndex).map(completion => {
let {
text: text,
range: range
} = completion,
newRange = new Ol.Range(new Ol.Position(range.start.line, range.start.character), new Ol.Position(range.end.line, range.end.character)),
completionItem = new Ol.InlineCompletionItem(text, newRange);
return completionItem.index = completion.index, completionItem.telemetry = completion.telemetry, completionItem.displayText = completion.displayText, completionItem.resultType = completion.resultType, completionItem.id = completion.uuid, completionItem.uri = document.uri, completionItem.insertPosition = new Ol.Position(completion.position.line, completion.position.character), completionItem.insertOffset = document.offsetAt(completionItem.insertPosition), completionItem.command = {
title: "PostInsertTask",
command: postInsertCmdName,
arguments: [completionItem]
}, completionItem;
});
return inlineCompletions.length === 0 ? {
type: "empty",
reason: "no completions in final result",
telemetryData: result.telemetryData
} : {
...result,
value: inlineCompletions
};
这里首先调用了completionsFromGhostTextResults
拿到inlineCompletions,然后创建了一个InlineCompletionItem
实例,将text和range传给它。
另外,这里还设置了InlineCompletionItem
的command
属性:
{
title: "PostInsertTask",
command: postInsertCmdName,
arguments: [completionItem]
}
也就是说,在用户采纳建议之后,会触发这个command,便于统计用户采纳、拒绝、局部采纳等等的情况。
关于completionsFormGhostTextResults的实现
代码语言:javascript复制function completionsFromGhostTextResults(ctx, completionResults, resultType, document, position, textEditorOptions, lastShownCompletionIndex) {
// 获取一个位置工厂
let locationFactory = ctx.get(LocationFactory);
// 获取当前行
let currentLine = document.lineAt(position);
// 根据completionResults生成新的对象数组
let completions = completionResults.map(result => {
let range, text = "";
// 根据一些条件生成新的补全结果
if (textEditorOptions && (result.completion = normalizeIndentCharacter(textEditorOptions, result.completion, currentLine.isEmptyOrWhitespace)), result.completion.displayNeedsWsOffset && currentLine.isEmptyOrWhitespace) {
range = locationFactory.range(locationFactory.position(position.line, 0), position);
text = result.completion.completionText;
} else if (currentLine.isEmptyOrWhitespace && result.completion.completionText.startsWith(currentLine.text)) {
range = locationFactory.range(locationFactory.position(position.line, 0), position);
text = result.completion.completionText;
} else {
let wordRange = document.getWordRangeAtPosition(position);
if (result.isMiddleOfTheLine) {
let line = document.lineAt(position);
let rangeFromStart = locationFactory.range(locationFactory.position(position.line, 0), position);
let textBefore = document.getText(rangeFromStart);
range = result.coversSuffix ? line.range : rangeFromStart;
text = textBefore result.completion.displayText;
} else if (wordRange) {
let word = document.getText(wordRange);
range = locationFactory.range(wordRange.start, position);
text = word result.completion.completionText;
} else {
let rangeFromStart = locationFactory.range(locationFactory.position(position.line, 0), position);
let textBefore = document.getText(rangeFromStart);
range = rangeFromStart;
text = textBefore result.completion.displayText;
}
}
// 返回一个新的补全结果对象
return {
uuid: v4_default(),
text: text,
range: range,
file: document.uri,
index: result.completion.completionIndex,
telemetry: result.telemetry,
displayText: result.completion.displayText,
position: position,
offset: document.offsetAt(position),
resultType: resultType
};
});
// 如果结果类型是2,并且有上次显示的补全索引,则将上次显示的补全结果移动到数组的最前面
if (resultType === 2 && lastShownCompletionIndex !== void 0) {
let lastShownCompletion = completions.find(predicate => predicate.index === lastShownCompletionIndex);
if (lastShownCompletion) {
let restCompletions = completions.filter(predicate => predicate.index !== lastShownCompletionIndex);
completions = [lastShownCompletion, ...restCompletions];
}
}
// 返回新的补全结果数组
return completions;
}
这里面有一些复杂的if判断,我们逐行分析下:
- 第一个实际上是空行的判断
result.completion.displayNeedsWsOffset && currentLine.isEmptyOrWhitespace
,在这个条件下,range取的是当前行的0起点到当前position:range = locationFactory.range(locationFactory.position(position.line, 0), position);
- 其他情况下,通过
getWordRangeAtPosition
拿到word-range,然后分了三种情况:- 如果是
isMiddleOfTheLine
,意味着当前光标在一行代码的中间位置,根据result.coversSuffix
的情况决定range,可以看到这个值表示的是代码补全是否要覆盖光标以后的内容,如果没有这个的话,默认的range是光标之前的,也就是说在中间插入代码,不会覆盖后面的内容。 - 如果是
wordRange
,表示当前光标在一个单词中间,这个时候代码补全的范围是在这个单词的后面。 - 其他情况下,一律补全在当前光标的后面。
- 如果是
- 注意这里text的取法不一样,在空行和word的情况下,取的是
completionText
,其他情况取的是displayText
。
最后处理了下缓存逻辑,返回整个补全结果的数组。
getGhostText核心逻辑
这里的逻辑较为复杂,我们分段来分析,首先初始化几个变量:
代码语言:javascript复制let documentSource = document.getText(),
positionOffset = document.offsetAt(position),
actualSuffix = documentSource.substring(positionOffset),
prompt = await extractPrompt(ctx, document, position, preIssuedTelemetryData);
这里拿到了documentSource
、positionOffset
、actualSuffix
、prompt
。
紧接着4个条件判断:
代码语言:javascript复制if (prompt.type === "copilotNotAvailable") return ghostTextLogger.debug(ctx, "Copilot not available, due to content exclusion"), {
type: "abortedBeforeIssued",
reason: "Copilot not available due to content exclusion"
};
if (prompt.type === "contextTooShort") return ghostTextLogger.debug(ctx, "Breaking, not enough context"), {
type: "abortedBeforeIssued",
reason: "Not enough context"
};
if (cancellationToken?.isCancellationRequested) return ghostTextLogger.info(ctx, "Cancelled after extractPrompt"), {
type: "abortedBeforeIssued",
reason: "Cancelled after extractPrompt"
};
let inlineSuggestion = isInlineSuggestion(document, position);
if (inlineSuggestion === void 0) return ghostTextLogger.debug(ctx, "Breaking, invalid middle of the line"), {
type: "abortedBeforeIssued",
reason: "Invalid middle of the line"
};
分别代表四种情况:
copilotNotAvailable
,因为内容被block了。contextTooShort
,上下文太少了。isCancellationRequested
,又是这个取消Request的。inlineSuggestion
是invalid,这是通过一个正则判定的,以特定字符(括号、大括号、方括号、双引号、单引号、反引号、冒号、分号或逗号)结尾的行,这些字符后面可能跟着任意数量的空白字符,这样的行才是合法的。
接着是一个策略确定:
代码语言:javascript复制ghostTextStrategy = await getGhostTextStrategy(ctx, document, position, prompt, isCycling, inlineSuggestion, preIssuedTelemetryData);
这个策略主要是决定是使用多行模式和单行模式进行补全,它的详细实现如下:
代码语言:javascript复制async function shouldRequestMultiline(ctx, document, position, inlineSuggestion, preIssuedTelemetryData, prompt, requestMultilineExploration, requestMultilineOnNewLine, requestMultiModel, requestMultiModelThreshold) {
// 如果强制多行请求被覆盖,则返回true
if (ctx.get(ForceMultiLine).requestMultilineOverride) return !0;
// 如果启用了多行探索,则收集一些关于文档和位置的信息
if (requestMultilineExploration) {
let isEmptyBlockStartDocumentPosition = await isEmptyBlockStart(document, position),
isEmptyBlockStartDocumentPositionRangeEnd = await isEmptyBlockStart(document, document.lineAt(position).range.end);
preIssuedTelemetryData.properties.isEmptyBlockStartDocumentPosition = isEmptyBlockStartDocumentPosition.toString(),
preIssuedTelemetryData.properties.isEmptyBlockStartDocumentPositionRangeEnd = isEmptyBlockStartDocumentPositionRangeEnd.toString(),
preIssuedTelemetryData.properties.inlineSuggestion = inlineSuggestion.toString(),
preIssuedTelemetryData.measurements.documentLineCount = document.lineCount,
preIssuedTelemetryData.measurements.positionLine = position.line;
}
// 如果文档的行数大于或等于8000,则发送一个遥测事件并返回false
if (document.lineCount >= 8e3) {
telemetry(ctx, "ghostText.longFileMultilineSkip", TelemetryData.createAndMarkAsIssued({
languageId: document.languageId,
lineCount: String(document.lineCount),
currentLine: String(position.line)
}));
return !1;
}
// 如果启用了多行在新行,并且文档的语言ID是typescript或typescriptreact,并且位置在新的一行,则返回true
if (requestMultilineOnNewLine && ["typescript", "typescriptreact"].includes(document.languageId) && isNewLine(position, document)) return !0;
// 初始化requestMultiline为false
let requestMultiline = !1;
// 如果内联建议为false,并且文档的语言ID是支持的,则检查位置是否在一个空的代码块的开始位置
if (!inlineSuggestion && (0, qL.isSupportedLanguageId)(document.languageId)) {
requestMultiline = await isEmptyBlockStart(document, position);
}
// 如果内联建议为true,并且文档的语言ID是支持的,则检查位置或位置的结束位置是否在一个空的代码块的开始位置
if (inlineSuggestion && (0, qL.isSupportedLanguageId)(document.languageId)) {
requestMultiline = (await isEmptyBlockStart(document, position)) || (await isEmptyBlockStart(document, document.lineAt(position).range.end));
}
// 如果以上条件都不满足,则调用requestMultilineExperiment函数
if (!requestMultiline) {
requestMultiline = await requestMultilineExperiment(requestMultilineExploration, requestMultiModel, requestMultiModelThreshold, document, prompt, preIssuedTelemetryData);
}
// 返回requestMultiline的值
return requestMultiline;
}
这里有一些策略:
- 文档大于8000行,直接不启用多行策略,并上报。
requestMultilineOnNewLine
这个值默认为true,意味着当我们语言是TypeScript的时候,默认在新的一行开启多行策略。- 如果是在某一行的中间,且是支持的语言列表内(python、jsts、go、ruby),判断当前光标是不是空块的开头,或者结尾是不是空的块开头,决定是否开启多行模式。(这里的判断还比较复杂,不同的语法有自己的代码块规则,copilot这里采用了wasm解析AST来判断代码块)。
- 如果不在某一行的中间,那只要检测一下是不是空的块开头。
- 其他情况,采用模型预测,这里
requestMultiModel
默认为true,requestMultiModelThreshold
默认为0.5。
调用模型的策略如下:
代码语言:javascript复制async function requestMultilineExperiment(requestMultilineExploration, requestMultiModel, requestMultiModelThreshold, document, prompt, preIssuedTelemetryData) {
let requestMultiline = !1;
// 如果启用了多行探索,则随机探索多行
if (requestMultilineExploration) {
requestMultiline = exploreMultilineRandom();
}
// 如果启用了多模型,并且文档的语言ID是javascript、javascriptreact或python,并且请求的多行分数大于多模型阈值,则返回true
if (requestMultiModel && ["javascript", "javascriptreact", "python"].includes(document.languageId)) {
requestMultiline = requestMultilineScore(prompt.prompt, document.languageId) > requestMultiModelThreshold;
}
// 返回requestMultiline的值
return requestMultiline;
}
可以看到目前仅支持js和python,预测模型分数>0.5,则采用多行模式。
模型本身构建的特征是根据语言和prompt的:
代码语言:javascript复制constructFeatures() {
let numFeatures = new Array(14).fill(0);
numFeatures[0] = this.prefixFeatures.length, numFeatures[1] = this.prefixFeatures.firstLineLength, numFeatures[2] = this.prefixFeatures.lastLineLength, numFeatures[3] = this.prefixFeatures.lastLineRstripLength, numFeatures[4] = this.prefixFeatures.lastLineStripLength, numFeatures[5] = this.prefixFeatures.rstripLength, numFeatures[6] = this.prefixFeatures.rstripLastLineLength, numFeatures[7] = this.prefixFeatures.rstripLastLineStripLength, numFeatures[8] = this.suffixFeatures.length, numFeatures[9] = this.suffixFeatures.firstLineLength, numFeatures[10] = this.suffixFeatures.lastLineLength, numFeatures[11] = this.prefixFeatures.secondToLastLineHasComment ? 1 : 0, numFeatures[12] = this.prefixFeatures.rstripSecondToLastLineHasComment ? 1 : 0, numFeatures[13] = this.prefixFeatures.prefixEndsWithNewline ? 1 : 0;
let langFeatures = new Array(Object.keys(languageMap).length 1).fill(0);
langFeatures[languageMap[this.language] ?? 0] = 1;
let prefixLastCharFeatures = new Array(Object.keys(contextualFilterCharacterMap).length 1).fill(0);
prefixLastCharFeatures[contextualFilterCharacterMap[this.prefixFeatures.lastChar] ?? 0] = 1;
let prefixRstripLastCharFeatures = new Array(Object.keys(contextualFilterCharacterMap).length 1).fill(0);
prefixRstripLastCharFeatures[contextualFilterCharacterMap[this.prefixFeatures.rstripLastChar] ?? 0] = 1;
let suffixFirstCharFeatures = new Array(Object.keys(contextualFilterCharacterMap).length 1).fill(0);
suffixFirstCharFeatures[contextualFilterCharacterMap[this.suffixFeatures.firstChar] ?? 0] = 1;
let suffixLstripFirstCharFeatures = new Array(Object.keys(contextualFilterCharacterMap).length 1).fill(0);
return suffixLstripFirstCharFeatures[contextualFilterCharacterMap[this.suffixFeatures.lstripFirstChar] ?? 0] = 1, numFeatures.concat(langFeatures, prefixLastCharFeatures, prefixRstripLastCharFeatures, suffixFirstCharFeatures, suffixLstripFirstCharFeatures);
}
整体预测方法比较复杂,看起来貌似是个逻辑回归的预测模型?
代码语言:javascript复制// 省略一系列复杂参数计算
let var100 = sigmoid(var0 var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14 var15 var16 var17 var18 var19 var20 var21 var22 var23 var24 var25 var26 var27 var28 var29 var30 var31 var32 var33 var34 var35 var36 var37 var38 var39 var40 var41 var42 var43 var44 var45 var46 var47 var48 var49 var50 var51 var52 var53 var54 var55 var56 var57 var58 var59 var60 var61 var62 var63 var64 var65 var66 var67 var68 var69 var70 var71 var72 var73 var74 var75 var76 var77 var78 var79 var80 var81 var82 var83 var84 var85 var86 var87 var88 var89 var90 var91 var92 var93 var94 var95 var96 var97 var98 var99);
return [1 - var100, var100];
接下来先从本地拿到inlineSuggestion:
代码语言:javascript复制let [prefix] = trimLastLine(document.getText(locationFactory.range(locationFactory.position(0, 0), position))),
choices = getLocalInlineSuggestion(ctx, prefix, prompt.prompt, ghostTextStrategy.requestMultiline),
这个在之前的文章分析过了,是一个100的LRU缓存,通过prompt key来索引。这里有一个小优化,就是getCompletionsForUserTyping
,在用户的输入过程中,如果包含上次的prefix,也是走缓存的,当然这里的前提是remainingPrefix刚好是上次的completion开头。
接着就是一系列的变量初始化:
代码语言:javascript复制engineURL = await getEngineURL(ctx, repoNwo, document.languageId, dogFood, userKind, customModel, retrievalOrg, preIssuedTelemetryData),
delayMs = await ctx.get(Features).beforeRequestWaitMs(featuresFilterArgs, preIssuedTelemetryData),
multiLogitBias = await ctx.get(Features).multiLogitBias(featuresFilterArgs, preIssuedTelemetryData),
requestContext = {
blockMode: ghostTextStrategy.blockMode,
languageId: document.languageId,
repoInfo: repoInfo,
engineURL: engineURL,
ourRequestId: ourRequestId,
prefix: prefix,
prompt: prompt.prompt,
multiline: ghostTextStrategy.requestMultiline,
indentation: contextIndentation(document, position),
isCycling: isCycling,
delayMs: delayMs,
multiLogitBias: multiLogitBias
},
debouncePredict = await ctx.get(Features).debouncePredict(),
contextualFilterEnable = await ctx.get(Features).contextualFilterEnable(),
contextualFilterAcceptThreshold = await ctx.get(Features).contextualFilterAcceptThreshold(),
contextualFilterEnableTree = await ctx.get(Features).contextualFilterEnableTree(),
contextualFilterExplorationTraffic = await ctx.get(Features).contextualFilterExplorationTraffic(),
computeContextualFilterScore = !1;
这里很多都是从特性平台上(Features)拉取的值。
接着就是请求后台的核心逻辑:
代码语言:javascript复制if (ghostTextStrategy.isCyclingRequest && (choices?.[0].length ?? 0) > 1 || !ghostTextStrategy.isCyclingRequest && choices !== void 0) {
ghostTextLogger.info(ctx, "Found inline suggestions locally");
} else {
if (statusBarItem?.setProgress(), ghostTextStrategy.isCyclingRequest) {
// 从网络获取所有完成建议
let networkChoices = await getAllCompletionsFromNetwork(ctx, requestContext, telemetryData, cancellationToken, ghostTextStrategy.finishedCb);
if (networkChoices.type === "success") {
let resultChoices = choices?.[0] ?? [];
// 遍历网络建议,如果结果选项中没有相同的建议,则添加到结果选项中
networkChoices.value.forEach(c => {
resultChoices.findIndex(v => v.completionText.trim() === c.completionText.trim()) === -1 && resultChoices.push(c);
}), choices = [resultChoices, 3];
} else if (choices === void 0) {
// 如果选项为undefined,则移除进度并返回网络建议
return statusBarItem?.removeProgress(), networkChoices;
}
} else {
// 获取防抖限制
let debounceLimit = await getDebounceLimit(ctx, telemetryData);
try {
// 进行防抖操作
await ghostTextDebouncer.debounce(debounceLimit);
} catch {
// 如果防抖失败,则移除进度并返回取消的结果
return {
type: "canceled",
reason: "by debouncer",
telemetryData: mkCanceledResultTelemetry(telemetryData)
};
}
// 如果取消令牌请求,则移除进度并返回取消的结果
if (cancellationToken?.isCancellationRequested) {
return ghostTextLogger.info(ctx, "Cancelled during debounce"), {
type: "canceled",
reason: "during debounce",
telemetryData: mkCanceledResultTelemetry(telemetryData)
};
}
// 如果启用了上下文过滤器,且上下文过滤器分数小于接受阈值,且随机数小于1减去上下文过滤器探索流量百分比
if (contextualFilterEnable && telemetryData.measurements.contextualFilterScore && telemetryData.measurements.contextualFilterScore < contextualFilterAcceptThreshold / 100 && Math.random() < 1 - contextualFilterExplorationTraffic / 100) {
// 移除进度并返回取消的结果
return ghostTextLogger.info(ctx, "Cancelled by contextual filter"), {
type: "canceled",
reason: "contextualFilterScore below threshold",
telemetryData: mkCanceledResultTelemetry(telemetryData)
};
}
// 从网络获取完成建议
let c = await getCompletionsFromNetwork(ctx, requestContext, telemetryData, cancellationToken, ghostTextStrategy.finishedCb);
if (c.type !== "success") {
// 如果获取失败,则移除进度并返回结果
return statusBarItem?.removeProgress(), c;
}
// 设置选项为获取的建议和0
choices = [[c.value], 0];
}
// 移除进度
statusBarItem?.removeProgress();
}
这里其实逻辑是两个分支:
- 当
isCyclingRequest
为true的时候,表示是用户手动触发的补全,这个时候不需要debounce,直接请求模型,此时resultType置为3。 - 否则,代表的是自动触发的代码补全,这个时候有一个debounce,debounce过后再调用模型。
值得一提的是,这里的debounceLimit
,是可以预测的,根据上下文相关性得分来预测:
async function getDebounceLimit(ctx, telemetryData) {
let expDebounce;
if ((await ctx.get(Features).debouncePredict()) && telemetryData.measurements.contextualFilterScore) {
let acceptProbability = telemetryData.measurements.contextualFilterScore,
sigmoidMin = 25,
sigmoidRange = 250,
sigmoidShift = .3475,
sigmoidSlope = 7;
expDebounce = sigmoidMin sigmoidRange / (1 Math.pow(acceptProbability / sigmoidShift, sigmoidSlope));
} else expDebounce = await ctx.get(Features).debounceMs();
return expDebounce > 0 ? expDebounce : 75;
}
看起来是一个sigmoid函数,加上一些超参,形成的简单预测模型?唯一的输入参数是acceptProbability
。
最后,还有一个contextualFilterScore
的计算,根据prompt和基本信息,来推测这个prompt可能被采纳的可能性:
function contextualFilterScore(ctx, telemetryData, prompt, contextualFilterEnableTree) {
let cfManager = ctx.get(ContextualFilterManager),
yt_1 = cfManager.previousLabel,
acw = 0;
"afterCursorWhitespace" in telemetryData.properties && telemetryData.properties.afterCursorWhitespace === "true" && (acw = 1);
let dt_1 = (Date.now() - cfManager.previousLabelTimestamp) / 1e3,
ln_dt_1 = Math.log(1 dt_1),
ln_promptLastLineLength = 0,
promptLastCharIndex = 0,
promptPrefix = prompt.prefix;
if (promptPrefix) {
ln_promptLastLineLength = Math.log(1 getLastLineLength(promptPrefix));
let promptLastChar = promptPrefix.slice(-1);
contextualFilterCharacterMap[promptLastChar] !== void 0 && (promptLastCharIndex = contextualFilterCharacterMap[promptLastChar]);
}
let ln_promptLastLineRstripLength = 0,
promptLastRstripCharIndex = 0,
promptPrefixRstrip = promptPrefix.trimEnd();
if (promptPrefixRstrip) {
ln_promptLastLineRstripLength = Math.log(1 getLastLineLength(promptPrefixRstrip));
let promptLastRstripChar = promptPrefixRstrip.slice(-1);
contextualFilterCharacterMap[promptLastRstripChar] !== void 0 && (promptLastRstripCharIndex = contextualFilterCharacterMap[promptLastRstripChar]);
}
let ln_documentLength = 0;
if ("documentLength" in telemetryData.measurements) {
let documentLength = telemetryData.measurements.documentLength;
ln_documentLength = Math.log(1 documentLength);
}
let ln_promptEndPos = 0;
if ("promptEndPos" in telemetryData.measurements) {
let promptEndPos = telemetryData.measurements.promptEndPos;
ln_promptEndPos = Math.log(1 promptEndPos);
}
let relativeEndPos = 0;
if ("promptEndPos" in telemetryData.measurements && "documentLength" in telemetryData.measurements) {
let documentLength = telemetryData.measurements.documentLength;
relativeEndPos = (telemetryData.measurements.promptEndPos .5) / (1 documentLength);
}
let languageIndex = 0;
contextualFilterLanguageMap[telemetryData.properties.languageId] !== void 0 && (languageIndex = contextualFilterLanguageMap[telemetryData.properties.languageId]);
let probabilityAccept = 0;
if (contextualFilterEnableTree) {
let features = new Array(221).fill(0);
features[0] = yt_1, features[1] = acw, features[2] = ln_dt_1, features[3] = ln_promptLastLineLength, features[4] = ln_promptLastLineRstripLength, features[5] = ln_documentLength, features[6] = ln_promptEndPos, features[7] = relativeEndPos, features[8 languageIndex] = 1, features[29 promptLastCharIndex] = 1, features[125 promptLastRstripCharIndex] = 1, probabilityAccept = treeScore(features)[1];
} else {
let sum = contextualFilterIntercept;
sum = contextualFilterWeights[0] * yt_1, sum = contextualFilterWeights[1] * acw, sum = contextualFilterWeights[2] * ln_dt_1, sum = contextualFilterWeights[3] * ln_promptLastLineLength, sum = contextualFilterWeights[4] * ln_promptLastLineRstripLength, sum = contextualFilterWeights[5] * ln_documentLength, sum = contextualFilterWeights[6] * ln_promptEndPos, sum = contextualFilterWeights[7] * relativeEndPos, sum = contextualFilterWeights[8 languageIndex], sum = contextualFilterWeights[29 promptLastCharIndex], sum = contextualFilterWeights[125 promptLastRstripCharIndex], probabilityAccept = 1 / (1 Math.exp(-sum));
}
return ctx.get(ContextualFilterManager).probabilityAccept = probabilityAccept, probabilityAccept;
}
这里如果contextualFilterEnableTree
为true,应该是采用决策树模型来预测,否则就是一个线性回归模型来预测。
关于extractPrompt
extractPrompt在我之前的文章中已经有很详尽的分析了,在此就不再赘述,请参见:
花了大半个月,我终于逆向分析了Github Copilot
小结一下
本篇文章主要分析了代码补全逻辑的主要实现,除了extractPrompt,基本所有的细节都涉及了,我们可以发现copilot虽然功能看起来好像比较单一,但是细节做起来其实十分不易,比如:
- 什么区域应该有代码提示?什么文件应该有代码提示?
- 光标位置在什么情况下补全?在什么情况下需要修正补全位置?
- 什么时候应该提示单行?什么时候提示多行?
- 什么时机提示?怎样更快地提示?怎样更合理地提示?
要做到一个好的体验,背后承载了大量复杂逻辑的处理。
上述代码已经提交在Github上,有需要的小伙伴可自取:
https://github.com/mengjian-github/copilot-analysis-new