我们现在有一个需求,我们需要对 g_exceptions
这个 vector 的访问进行同步处理,确保同一时刻只有一个线程能向它插入新的元素。为此我使用了一个 mutex 和一个锁(lock)。mutex 是同步操作的主体,在 C 11 的 <mutex>
头文件中,有四种风格的实现:
- mutex:提供了核心的
lock()
unlock()
方法,以及当 mutex 不可用时就会返回的非阻塞方法try_lock()
- recursive_mutex:允许同一线程内对同一 mutex 的多重持有
- timed_mutex: 与
mutex
类似,但多了try_lock_for()
try_lock_until()
两个方法,用于在特定时长里持有 mutex,或持有 mutex 直到某个特定时间点 - recursive_timed_mutex:
recursive_mutex
和timed_mutex
的结合
下面是一个使用 std::mutex
的例子(注意 get_id()
和 sleep_for()
两个辅助方法的使用,上文已有提及)。
#include <iostream>
#include <thread>
#include <mutex>
#include <chrono>
std::mutex g_lock;
void func()
{
g_lock.lock();
std::cout << "entered thread " << std::this_thread::get_id() << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(rand() % 10));
std::cout << "leaving thread " << std::this_thread::get_id() << std::endl;
g_lock.unlock();
}
int main()
{
srand((unsigned int)time(0));
std::thread t1(func);
std::thread t2(func);
std::thread t3(func);
t1.join();
t2.join();
t3.join();
return 0;
}
输出如下:
代码语言:txt复制entered thread 10144
leaving thread 10144
entered thread 4188
leaving thread 4188
entered thread 3424
leaving thread 3424
lock()
unlock()
两个方法应该很好懂,前者锁住 mutex,如果该 mutex 不可用,则阻塞线程;稍后,后者解锁线程。
下面一个例子展示了一个简单的线程安全的容器(内部使用了 std::vector
)。该容器提供用于添加单一元素的 add()
方法,以及添加多个元素的 addrange()
方法(内部调用 add()
实现)。
注意:尽管如此,下面会指出,由于 va_args
的使用等原因,这个容器并非真正线程安全。此外,dump()
方法不应属于容器,在实际实现中它应该作为一个独立的辅助函数。这个例子的目的仅仅是展示 mutex 的相关概念,而非实现一个完整的线程安全的容器。
template <typename T>
class container
{
std::mutex _lock;
std::vector<T> _elements;
public:
void add(T element)
{
_lock.lock();
_elements.push_back(element);
_lock.unlock();
}
void addrange(int num, ...)
{
va_list arguments;
va_start(arguments, num);
for (int i = 0; i < num; i )
{
_lock.lock();
add(va_arg(arguments, T));
_lock.unlock();
}
va_end(arguments);
}
void dump()
{
_lock.lock();
for(auto e : _elements)
std::cout << e << std::endl;
_lock.unlock();
}
};
void func(container<int>& cont)
{
cont.addrange(3, rand(), rand(), rand());
}
int main()
{
srand((unsigned int)time(0));
container<int> cont;
std::thread t1(func, std::ref(cont));
std::thread t2(func, std::ref(cont));
std::thread t3(func, std::ref(cont));
t1.join();
t2.join();
t3.join();
cont.dump();
return 0;
}
当你运行这个程序时,会进入死锁。原因:在 mutex 被释放前,容器尝试多次持有它,这显然不可能。这就是为什么引入 std::recursive_mutex
,它允许一个线程对 mutex 多重持有。允许的最大持有次数并不确定,但当达到上限时,线程锁会抛出 std::system_error
错误。因此,要解决上面例子的错误,除了修改 addrange
令其不再调用 lock
和 unlock
之外,可以用 std::recursive_mutex
代替 mutex
。
template <typename T>
class container
{
std::recursive_mutex _lock;
// ...
};
成功输出:
6334
18467
41
6334
18467
41
6334
18467
41
敏锐的读者可能注意到,每次调用 func()
输出的都是相同的数字。这是因为,seed 是线程局部量,调用 srand()
只会在主线程中初始化 seed,在其他工作线程中 seed 并未被初始化,所以每次得到的数字都是一样的。
手动加锁和解锁可能造成问题,比如忘记解锁或锁的次序出错,都会造成死锁。C 11 标准提供了若干类和函数来解决这个问题。封装类允许以 RAII 风格使用 mutex,在一个锁的生存周期内自动加锁和解锁。这些封装类包括:
- lock_guard:当一个实例被创建时,会尝试持有 mutex (通过调用
lock()
);当实例销毁时,自动释放 mutex (通过调用unlock()
)。不允许拷贝。 - unique_lock:通用 mutex 封装类,与
lock_guard
不同,还支持延迟锁、计时锁、递归锁、移交锁的持有权,以及使用条件变量。不允许拷贝,但允许转移(move)。
借助这些封装类,可以把容器改写为:
代码语言:txt复制template <typename T>
class container
{
std::recursive_mutex _lock;
std::vector<T> _elements;
public:
void add(T element)
{
std::lock_guard<std::recursive_mutex> locker(_lock);
_elements.push_back(element);
}
void addrange(int num, ...)
{
va_list arguments;
va_start(arguments, num);
for (int i = 0; i < num; i )
{
std::lock_guard<std::recursive_mutex> locker(_lock);
add(va_arg(arguments, T));
}
va_end(arguments);
}
void dump()
{
std::lock_guard<std::recursive_mutex> locker(_lock);
for(auto e : _elements)
std::cout << e << std::endl;
}
}
读者可能会提出, dump()
方法不更改容器的状态,应该设为 const。但如果你添加 const 关键字,会得到如下编译错误:
‘std::lock_guard<_Mutex>::lock_guard(_Mutex &)' : cannot convert parameter 1 from ‘const std::recursive_mutex' to ‘std::recursive_mutex &'
一个 mutex (不管何种风格)必须被持有和释放,这意味着 lock()
unlock
方法必被调用,这两个方法是 non-const 的。所以,逻辑上 lock_guard
的声明不能是 const (若该方法 为 const,则 mutex 也为 const)。这个问题的解决办法是,将 mutex 设为 mutable
。mutable
允许由 const 方法更改 mutex 状态。不过,这种用法仅限于隐式的,或「元(meta)」状态——譬如,运算过的高速缓存、检索完成的数据,使得下次调用能瞬间完成;或者,改变像 mutex 之类的位元,仅仅作为一个对象的实际状态的补充。
template <typename T>
class container
{
mutable std::recursive_mutex _lock;
std::vector<T> _elements;
public:
void dump() const
{
std::lock_guard<std::recursive_mutex> locker(_lock);
for(auto e : _elements)
std::cout << e << std::endl;
}
};
这些封装类锁的构造函数可以通过重载的声明来指定锁的策略。可用的策略有:
defer_lock_t
类型的defer_lock
:不持有 mutextry_to_lock_t
类型的try_to_lock
: 尝试持有 mutex 而不阻塞线程adopt_lock_t
类型的adopt_lock
:假定调用它的线程已持有 mutex
这些策略的声明方式如下:
代码语言:txt复制struct defer_lock_t { };
struct try_to_lock_t { };
struct adopt_lock_t { };
constexpr std::defer_lock_t defer_lock = std::defer_lock_t();
constexpr std::try_to_lock_t try_to_lock = std::try_to_lock_t();
constexpr std::adopt_lock_t adopt_lock = std::adopt_lock_t();
除了这些 mutex 封装类之外,标准库还提供了两个方法用于锁住一个或多个 mutex:
- lock:锁住 mutex,通过一个避免了死锁的算法(通过调用
lock()
,try_lock()
和unlock()
实现) - try_lock:尝试通过调用
try_lock()
来调用多个 mutex,调用次序由 mutex 的指定次序而定
下面是一个死锁案例:有一个元素容器,以及一个 exchange()
函数用于互换两个容器里的某个元素。为了实现线程安全,这个函数通过一个和容器关联的 mutex,对这两个容器的访问进行同步。
template <typename T>
class container
{
public:
std::mutex _lock;
std::set<T> _elements;
void add(T element)
{
_elements.insert(element);
}
void remove(T element)
{
_elements.erase(element);
}
};
void exchange(container<int>& cont1, container<int>& cont2, int value)
{
cont1._lock.lock();
std::this_thread::sleep_for(std::chrono::seconds(1)); // <-- forces context switch to simulate the deadlock
cont2._lock.lock();
cont1.remove(value);
cont2.add(value);
cont1._lock.unlock();
cont2._lock.unlock();
}
假如这个函数在两个线程中被调用,在其中一个线程中,一个元素被移出容器 1 而加到容器 2;在另一个线程中,它被移出容器 2 而加到容器 1。这可能导致死锁——当一个线程刚持有第一个锁,程序马上切入另一个线程的时候。
代码语言:txt复制int main()
{
srand((unsigned int)time(NULL));
container<int> cont1;
cont1.add(1);
cont1.add(2);
cont1.add(3);
container<int> cont2;
cont2.add(4);
cont2.add(5);
cont2.add(6);
std::thread t1(exchange, std::ref(cont1), std::ref(cont2), 3);
std::thread t2(exchange, std::ref(cont2), std::ref(cont1), 6);
t1.join();
t2.join();
return 0;
}
要解决这个问题,可以使用 std::lock
,保证所有的锁都以不会死锁的方式被持有:
void exchange(container<int>& cont1, container<int>& cont2, int value)
{
std::lock(cont1._lock, cont2._lock);
cont1.remove(value);
cont2.add(value);
cont1._lock.unlock();
cont2._lock.unlock();
}
总结
- 创建一个mutex对象:使用std::mutex创建一个互斥锁。
- 加锁操作:在进入临界区之前调用lock()方法,以获取独占式访问权限。
- 解锁操作:在退出临界区时调用unlock()方法释放持有的独占式访问权限。
- 使用RAII进行自动加解锁管理:可以通过定义 std::unique_lock/std::shared_lock/ std::scoped_lock 来简化加解锁过程并避免手工管理死锁等风险。
- 防止死锁问题:如果需要同时获得多个互斥器上的所有权,请确保按照相同顺序获取它们,否则可能会发生死锁。另外,应尽量减小临界区大小以提高性能,并考虑使用其他同步原语如条件变量、信号量等来实现更复杂的同步需求。
- 尽可能地避免使用全局变量: 在多线程编程环境中, 全局变量很容易导致竞态条件(race condition),因此我们应该尽可能地将共享数据限制到某些具体的作用域,如对象内部等。
- 小心使用递归锁:std::recursive_mutex允许同一个线程多次获得锁,并在最后一次解除锁定。但是,在实际应用中,这种机制可能会导致死锁问题和性能瓶颈等问题,因此必须谨慎地使用。
我正在参与2023腾讯技术创作特训营第三期有奖征文,组队打卡瓜分大奖!