YOLOv5改进---注意力机制:DoubleAttention注意力,SENet进阶版本

2023-11-30 15:40:52 浏览数 (1)

摘要:DoubleAttention注意力助力YOLOv5,即插即用,性能优于SENet

1. DoubleAttention

论文: https://arxiv.org/pdf/1810.11579.pdf

DoubleAttention网络结构是一种用于计算机视觉领域的深度学习网络结构,主要用于图像的分割和识别任务。该网络结构采用双重注意力机制,包括Spatial Attention和Channel Attention。Spatial Attention用于捕获图像中不同空间位置的重要性,而Channel Attention用于捕获图像中不同通道的重要性。

本文贡献:

  • 这次是复现NeurIPS2018的一篇论文,本论文也是非常的简单呢,是一个涨点神器,也是一个即插即用的小模块。
  • 本文的主要创新点是提出了一个新的注意力机制,你可以看做SE的进化版本,在各CV任务测试性能如下

​ 1.1 加入 common.py

代码语言:javascript复制
######################  DoubleAttention   ####     end   by  AI&CV  ###############################

import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn import functional as F



class DoubleAttention(nn.Module):

    def __init__(self, in_channels,c_m=128,c_n=128,reconstruct = True):
        super().__init__()
        self.in_channels=in_channels
        self.reconstruct = reconstruct
        self.c_m=c_m
        self.c_n=c_n
        self.convA=nn.Conv2d(in_channels,c_m,1)
        self.convB=nn.Conv2d(in_channels,c_n,1)
        self.convV=nn.Conv2d(in_channels,c_n,1)
        if self.reconstruct:
            self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size = 1)
        self.init_weights()


    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, h,w=x.shape
        assert c==self.in_channels
        A=self.convA(x) #b,c_m,h,w
        B=self.convB(x) #b,c_n,h,w
        V=self.convV(x) #b,c_n,h,w
        tmpA=A.view(b,self.c_m,-1)
        attention_maps=F.softmax(B.view(b,self.c_n,-1))
        attention_vectors=F.softmax(V.view(b,self.c_n,-1))
        # step 1: feature gating
        global_descriptors=torch.bmm(tmpA,attention_maps.permute(0,2,1)) #b.c_m,c_n
        # step 2: feature distribution
        tmpZ = global_descriptors.matmul(attention_vectors) #b,c_m,h*w
        tmpZ=tmpZ.view(b,self.c_m,h,w) #b,c_m,h,w
        if self.reconstruct:
            tmpZ=self.conv_reconstruct(tmpZ)

        return tmpZ
######################  DoubleAttention   ####     end   by  AI&CV  ###############################

1.2 加入yolo.py中:

代码语言:javascript复制
        elif m is DoubleAttention:
            c1, c2 = ch[f], args[0]
            if c2 != no:
                c2 = make_divisible(c2 * gw, 8)
            args = [c1, *args[1:]]

1.3 yolov5s_DoubleAttention.yaml

代码语言:javascript复制
# YOLOv5 


	

0 人点赞