阅读(2381) (27)

Decorator

2020-06-10 11:49:25 更新

简介

Decorator 提案经过了大幅修改,目前还没有定案,不知道语法会不会再变。下面的内容完全依据以前的提案,已经有点过时了。等待定案以后,需要完全重写。

装饰器(Decorator)是一种与类(class)相关的语法,用来注释或修改类和类方法。许多面向对象的语言都有这项功能,目前有一个提案将其引入了 ECMAScript。

装饰器是一种函数,写成@ + 函数名。它可以放在类和类方法的定义前面。

@frozen class Foo {
  @configurable(false)
  @enumerable(true)
  method() {}


  @throttle(500)
  expensiveMethod() {}
}

上面代码一共使用了四个装饰器,一个用在类本身,另外三个用在类方法。它们不仅增加了代码的可读性,清晰地表达了意图,而且提供一种方便的手段,增加或修改类的功能。

1. 类的装饰

装饰器可以用来装饰整个类。

@testable
class MyTestableClass {
  // ...
}


function testable(target) {
  target.isTestable = true;
}


MyTestableClass.isTestable // true

上面代码中,@testable 就是一个装饰器。它修改了 MyTestableClass 这个类的行为,为它加上了静态属性 isTestabletestable 函数的参数targetMyTestableClass 类本身。

基本上,装饰器的行为就是下面这样。

@decorator
class A {}


// 等同于


class A {}
A = decorator(A) || A;

也就是说,装饰器是一个对类进行处理的函数。装饰器函数的第一个参数,就是所要装饰的目标类。

function testable(target) {
  // ...
}

上面代码中, testable 函数的参数 target ,就是会被装饰的类。

如果觉得一个参数不够用,可以在装饰器外面再封装一层函数。

function testable(isTestable) {
  return function(target) {
    target.isTestable = isTestable;
  }
}


@testable(true)
class MyTestableClass {}
MyTestableClass.isTestable // true


@testable(false)
class MyClass {}
MyClass.isTestable // false

上面代码中,装饰器 testable 可以接受参数,这就等于可以修改装饰器的行为。

注意,装饰器对类的行为的改变,是代码编译时发生的,而不是在运行时。这意味着,装饰器能在编译阶段运行代码。也就是说,装饰器本质就是编译时执行的函数。

前面的例子是为类添加一个静态属性,如果想添加实例属性,可以通过目标类的 prototype 对象操作。

function testable(target) {
  target.prototype.isTestable = true;
}


@testable
class MyTestableClass {}


let obj = new MyTestableClass();
obj.isTestable // true

上面代码中,装饰器函数 testable 是在目标类的 prototype 对象上添加属性,因此就可以在实例上调用。

下面是另外一个例子。

// mixins.js
export function mixins(...list) {
  return function (target) {
    Object.assign(target.prototype, ...list)
  }
}


// main.js
import { mixins } from './mixins'


const Foo = {
  foo() { console.log('foo') }
};


@mixins(Foo)
class MyClass {}


let obj = new MyClass();
obj.foo() // 'foo'

上面代码通过装饰器 mixins ,把 Foo 对象的方法添加到了 MyClass 的实例上面。可以用 Object.assign()模拟这个功能。

const Foo = {
  foo() { console.log('foo') }
};


class MyClass {}


Object.assign(MyClass.prototype, Foo);


let obj = new MyClass();
obj.foo() // 'foo'

实际开发中,React 与 Redux 库结合使用时,常常需要写成下面这样。

class MyReactComponent extends React.Component {}


export default connect(mapStateToProps, mapDispatchToProps)(MyReactComponent);

有了装饰器,就可以改写上面的代码。

@connect(mapStateToProps, mapDispatchToProps)
export default class MyReactComponent extends React.Component {}

相对来说,后一种写法看上去更容易理解。

2. 方法的装饰

装饰器不仅可以装饰类,还可以装饰类的属性。

class Person {
  @readonly
  name() { return `${this.first} ${this.last}` }
}

上面代码中,装饰器 readonly用来装饰“类”的 name 方法。

装饰器函数readonly 一共可以接受三个参数。

function readonly(target, name, descriptor){
  // descriptor对象原来的值如下
  // {
  //   value: specifiedFunction,
  //   enumerable: false,
  //   configurable: true,
  //   writable: true
  // };
  descriptor.writable = false;
  return descriptor;
}


readonly(Person.prototype, 'name', descriptor);
// 类似于
Object.defineProperty(Person.prototype, 'name', descriptor);

装饰器第一个参数是类的原型对象,上例是 Person.prototype ,装饰器的本意是要“装饰”类的实例,但是这个时候实例还没生成,所以只能去装饰原型(这不同于类的装饰,那种情况时 target 参数指的是类本身);第二个参数是所要装饰的属性名,第三个参数是该属性的描述对象。

另外,上面代码说明,装饰器(readonly)会修改属性的描述对象(descriptor),然后被修改的描述对象再用来定义属性。

下面是另一个例子,修改属性描述对象的 enumerable 属性,使得该属性不可遍历。

class Person {
  @nonenumerable
  get kidCount() { return this.children.length; }
}


function nonenumerable(target, name, descriptor) {
  descriptor.enumerable = false;
  return descriptor;
}

下面的@log装饰器,可以起到输出日志的作用。

class Math {
  @log
  add(a, b) {
    return a + b;
  }
}


function log(target, name, descriptor) {
  var oldValue = descriptor.value;


  descriptor.value = function() {
    console.log( Calling ${name} with , arguments);
    return oldValue.apply(this, arguments);
  };


  return descriptor;
}


const math = new Math();


// passed parameters should get logged now
math.add(2, 4);

上面代码中,@log 装饰器的作用就是在执行原始的操作之前,执行一次console.log,从而达到输出日志的目的。

装饰器有注释的作用。

@testable
class Person {
  @readonly
  @nonenumerable
  name() { return ${this.first} ${this.last} }
}

从上面代码中,我们一眼就能看出, Person 类是可测试的,而 name 方法是只读和不可枚举的。

下面是使用 Decorator 写法的组件,看上去一目了然。

@Component({
  tag: 'my-component',
  styleUrl: 'my-component.scss'
})
export class MyComponent {
  @Prop() first: string;
  @Prop() last: string;
  @State() isVisible: boolean = true;


  render() {
    return (
      <p>Hello, my name is {this.first} {this.last}</p>
    );
  }
}

如果同一个方法有多个装饰器,会像剥洋葱一样,先从外到内进入,然后由内向外执行。

function dec(id){
  console.log('evaluated', id);
  return (target, property, descriptor) => console.log('executed', id);
}


class Example {
    @dec(1)
    @dec(2)
    method(){}
}
// evaluated 1
// evaluated 2
// executed 2
// executed 1

上面代码中,外层装饰器@dec(1)先进入,但是内层装饰器@dec(2)先执行。

除了注释,装饰器还能用来类型检查。所以,对于类来说,这项功能相当有用。从长期来看,它将是 JavaScript 代码静态分析的重要工具。

3. 为什么装饰器不能用于函数?

装饰器只能用于类和类的方法,不能用于函数,因为存在函数提升。

var counter = 0;


var add = function () {
  counter++;
};


@add
function foo() {
}

上面的代码,意图是执行后 counter 等于 1,但是实际上结果是 counter 等于 0。因为函数提升,使得实际执行的代码是下面这样。

@add
function foo() {
}


var counter;
var add;


counter = 0;


add = function () {
  counter++;
};

下面是另一个例子。

var readOnly = require("some-decorator");


@readOnly
function foo() {
}

上面代码也有问题,因为实际执行是下面这样。

var readOnly;


@readOnly
function foo() {
}


readOnly = require("some-decorator");

总之,由于存在函数提升,使得装饰器不能用于函数。类是不会提升的,所以就没有这方面的问题。

另一方面,如果一定要装饰函数,可以采用高阶函数的形式直接执行。

function doSomething(name) {
  console.log('Hello, ' + name);
}


function loggingDecorator(wrapped) {
  return function() {
    console.log('Starting');
    const result = wrapped.apply(this, arguments);
    console.log('Finished');
    return result;
  }
}


const wrapped = loggingDecorator(doSomething);

4. core-decorators.js

core-decorators.js是一个第三方模块,提供了几个常见的装饰器,通过它可以更好地理解装饰器。

(1)@autobind

autobind装饰器使得方法中的 this对象,绑定原始对象。

import { autobind } from 'core-decorators';


class Person {
  @autobind
  getPerson() {
    return this;
  }
}


let person = new Person();
let getPerson = person.getPerson;


getPerson() === person;
// true

(2)@readonly

readonly 装饰器使得属性或方法不可写。

import { readonly } from 'core-decorators';


class Meal {
  @readonly
  entree = 'steak';
}


var dinner = new Meal();
dinner.entree = 'salmon';
// Cannot assign to read only property 'entree' of [object Object]

(3)@override

override装饰器检查子类的方法,是否正确覆盖了父类的同名方法,如果不正确会报错。

import { override } from 'core-decorators';


class Parent {
  speak(first, second) {}
}


class Child extends Parent {
  @override
  speak() {}
  // SyntaxError: Child#speak() does not properly override Parent#speak(first, second)
}


// or


class Child extends Parent {
  @override
  speaks() {}
  // SyntaxError: No descriptor matching Child#speaks() was found on the prototype chain.
  //
  //   Did you mean "speak"?
}

(4)@deprecate (别名@deprecated)

deprecatedeprecated装饰器在控制台显示一条警告,表示该方法将废除。

import { deprecate } from 'core-decorators';


class Person {
  @deprecate
  facepalm() {}


  @deprecate('We stopped facepalming')
  facepalmHard() {}


  @deprecate('We stopped facepalming', { url: 'http://knowyourmeme.com/memes/facepalm' })
  facepalmHarder() {}
}


let person = new Person();


person.facepalm();
// DEPRECATION Person#facepalm: This function will be removed in future versions.


person.facepalmHard();
// DEPRECATION Person#facepalmHard: We stopped facepalming


person.facepalmHarder();
// DEPRECATION Person#facepalmHarder: We stopped facepalming
//
//     See http://knowyourmeme.com/memes/facepalm for more details.
//

(5)@suppressWarnings

suppressWarnings装饰器抑制 deprecated装饰器导致的 console.warn()调用。但是,异步代码发出的调用除外。

import { suppressWarnings } from 'core-decorators';


class Person {
  @deprecated
  facepalm() {}


  @suppressWarnings
  facepalmWithoutWarning() {
    this.facepalm();
  }
}


let person = new Person();


person.facepalmWithoutWarning();
// no warning is logged

5. 使用装饰器实现自动发布事件

我们可以使用装饰器,使得对象的方法被调用时,自动发出一个事件。

const postal = require("postal/lib/postal.lodash");


export default function publish(topic, channel) {
  const channelName = channel || '/';
  const msgChannel = postal.channel(channelName);
  msgChannel.subscribe(topic, v => {
    console.log('频道: ', channelName);
    console.log('事件: ', topic);
    console.log('数据: ', v);
  });


  return function(target, name, descriptor) {
    const fn = descriptor.value;


    descriptor.value = function() {
      let value = fn.apply(this, arguments);
      msgChannel.publish(topic, value);
    };
  };
}

上面代码定义了一个名为publish的装饰器,它通过改写` descriptor.value`` ,使得原方法被调用时,会自动发出一个事件。它使用的事件“发布/订阅”库是Postal.js

它的用法如下。

// index.js
import publish from './publish';


class FooComponent {
  @publish('foo.some.message', 'component')
  someMethod() {
    return { my: 'data' };
  }
  @publish('foo.some.other')
  anotherMethod() {
    // ...
  }
}


let foo = new FooComponent();


foo.someMethod();
foo.anotherMethod();

以后,只要调用 someMethod 或者 anotherMethod ,就会自动发出一个事件。

$ bash-node index.js
频道:  component
事件:  foo.some.message
数据:  { my: 'data' }


频道:  /
事件:  foo.some.other
数据:  undefined

6. Mixin

在装饰器的基础上,可以实现 Mixin 模式。所谓 Mixin模式,就是对象继承的一种替代方案,中文译为“混入”(mix in),意为在一个对象之中混入另外一个对象的方法。

请看下面的例子。

const Foo = {
  foo() { console.log('foo') }
};


class MyClass {}


Object.assign(MyClass.prototype, Foo);


let obj = new MyClass();
obj.foo() // 'foo'

上面代码之中,对象 Foo 有一个 foo 方法,通过 Object.assign 方法,可以将 foo 方法“混入” MyClass 类,导致 MyClass 的实例 obj 对象都具有 foo 方法。这就是“混入”模式的一个简单实现。

下面,我们部署一个通用脚本 mixins.js ,将 Mixin 写成一个装饰器。

export function mixins(...list) {
  return function (target) {
    Object.assign(target.prototype, ...list);
  };
}

然后,就可以使用上面这个装饰器,为类“混入”各种方法。

import { mixins } from './mixins';


const Foo = {
  foo() { console.log('foo') }
};


@mixins(Foo)
class MyClass {}


let obj = new MyClass();
obj.foo() // "foo"

通过 mixins 这个装饰器,实现了在 MyClass 类上面“混入” Foo 对象的 foo 方法。

不过,上面的方法会改写 MyClass 类的 prototype 对象,如果不喜欢这一点,也可以通过类的继承实现 Mixin。

class MyClass extends MyBaseClass {
  /* ... */
}

上面代码中, MyClass 继承了 MyBaseClass 。如果我们想在 MyClass 里面“混入”一个 foo 方法,一个办法是在 MyClass 和 MyBaseClass 之间插入一个混入类,这个类具有 foo 方法,并且继承了 MyBaseClass 的所有方法,然后 MyClass 再继承这个类。

let MyMixin = (superclass) => class extends superclass {
  foo() {
    console.log('foo from MyMixin');
  }
};

上面代码中, MyMixin 是一个混入类生成器,接受 superclass 作为参数,然后返回一个继承 superclass 的子类,该子类包含一个 foo 方法。

接着,目标类再去继承这个混入类,就达到了“混入” foo 方法的目的。

class MyClass extends MyMixin(MyBaseClass) {
  /* ... */
}


let c = new MyClass();
c.foo(); // "foo from MyMixin"

如果需要“混入”多个方法,就生成多个混入类。

class MyClass extends Mixin1(Mixin2(MyBaseClass)) {
  /* ... */
}

这种写法的一个好处,是可以调用 super ,因此可以避免在“混入”过程中覆盖父类的同名方法。

let Mixin1 = (superclass) => class extends superclass {
  foo() {
    console.log('foo from Mixin1');
    if (super.foo) super.foo();
  }
};


let Mixin2 = (superclass) => class extends superclass {
  foo() {
    console.log('foo from Mixin2');
    if (super.foo) super.foo();
  }
};


class S {
  foo() {
    console.log('foo from S');
  }
}


class C extends Mixin1(Mixin2(S)) {
  foo() {
    console.log('foo from C');
    super.foo();
  }
}

上面代码中,每一次混入发生时,都调用了父类的 super.foo 方法,导致父类的同名方法没有被覆盖,行为被保留了下来。

new C().foo()
// foo from C
// foo from Mixin1
// foo from Mixin2
// foo from S

7. Trait

Trait也是一种装饰器,效果与Mixin 类似,但是提供更多功能,比如防止同名方法的冲突、排除混入某些方法、为混入的方法起别名等等。

下面采用traits-decorator这个第三方模块作为例子。这个模块提供的 traits 装饰器,不仅可以接受对象,还可以接受 ES6 类作为参数。

import { traits } from 'traits-decorator';


class TFoo {
  foo() { console.log('foo') }
}


const TBar = {
  bar() { console.log('bar') }
};


@traits(TFoo, TBar)
class MyClass { }


let obj = new MyClass();
obj.foo() // foo
obj.bar() // bar

上面代码中,通过 traits 装饰器,在 MyClass 类上面“混入”了 TFoo 类的 foo 方法和 TBar 对象的 bar 方法。

Trait 不允许“混入”同名方法。

import { traits } from 'traits-decorator';


class TFoo {
  foo() { console.log('foo') }
}


const TBar = {
  bar() { console.log('bar') },
  foo() { console.log('foo') }
};


@traits(TFoo, TBar)
class MyClass { }
// 报错
// throw new Error('Method named: ' + methodName + ' is defined twice.');
//        ^
// Error: Method named: foo is defined twice.

上面代码中, TFoo 和 TBar 都有 foo 方法,结果 traits 装饰器报错。

一种解决方法是排除 TBar 的 foo 方法。

import { traits, excludes } from 'traits-decorator';


class TFoo {
  foo() { console.log('foo') }
}


const TBar = {
  bar() { console.log('bar') },
  foo() { console.log('foo') }
};


@traits(TFoo, TBar::excludes('foo'))
class MyClass { }


let obj = new MyClass();
obj.foo() // foo
obj.bar() // bar

上面代码使用绑定运算符(::)在 TBar 上排除 foo 方法,混入时就不会报错了。

另一种方法是为 TBar 的 foo 方法起一个别名。

import { traits, alias } from 'traits-decorator';


class TFoo {
  foo() { console.log('foo') }
}


const TBar = {
  bar() { console.log('bar') },
  foo() { console.log('foo') }
};


@traits(TFoo, TBar::alias({foo: 'aliasFoo'}))
class MyClass { }


let obj = new MyClass();
obj.foo() // foo
obj.aliasFoo() // foo
obj.bar() // bar

上面代码为 TBar 的 foo 方法起了别名 aliasFoo ,于是 MyClass 也可以混入 TBar 的 foo 方法了。

alias 和 excludes 方法,可以结合起来使用。

@traits(TExample::excludes('foo','bar')::alias({baz:'exampleBaz'}))
class MyClass {}

上面代码排除了 TExample 的 foo 方法和 bar 方法,为 baz 方法起了别名 exampleBaz 。

as 方法则为上面的代码提供了另一种写法。

@traits(TExample::as({excludes:['foo', 'bar'], alias: {baz: 'exampleBaz'}}))
class MyClass {}